Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth.
Purpose Although a wide range of keratoprostheses have been developed from various materials over the last 30 years there has been limited optimisation of material properties to enhance clinical performance and minimise tissue incompatibility within the ocular environment. The development of our understanding of the biological interactions between materials and corneal tissues, the failure of existing keratoprostheses, the advances in the design and synthesis of materials of controlled molecular architectures and the advancements in composite biomaterials in recent years provides an opportunity to design enhanced biomaterials for the fabrication of the next generation of keratoprosthetic with improved clinical performance. Methods This paper will review studies undertaken by our group which have enhanced our understanding of the biological interactions of existing keratoprosthetic materials in the ocular environment and the development of novel approaches to new materials for the fabrication of keratoprosthetic based on the utilisation of biomimetic and composite systems and recent advances in the polymeric biomaterials. Results The paper will review data relating to the biological degradation of biomimetic materials and approaches to optimising these processes to provide materials with enhanced tissue integration and reduced inflammatory response. The in vitro biological evaluation of some of these materials indicates that material engineering may improve the clinical performance of biomaterials in the corneal environment. Conclusion The development of novel materials for the fabrication of keratoprostheses relies on improving our understanding of the mechanisms of failure of existing devices and how biomaterials can be engineered to overcome these challenges
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.