Gravitationswellen -ein leichtes Zittern der raumzeitVor 1,3 Milliarden Jahren: Seit langer Zeit schon haben sich in einer fernen Galaxie zwei schwarze Löcher umkreist, Gebilde von so ungeheurer Dichte, das selbst Licht ihrer Schwerkraft nicht mehr entweichen kann und von ihnen eingefangen wird. Seit Jahrmillionen haben sie bei ihrem Tanz umeinander mit ihrer masse die Raumzeit verformt und dabei Gravitationswellen abgestrahlt. ihr Abstand wurde dabei immer kleiner, ihre Geschwindigkeit immer höher, bis sie schließlich unter einem gewaltigen Ausbruch von Gravitationswellen zu einem einzelnen schwarzen Loch verschmelzen. Später werden wir diese Wellen GW150914 nennen. Für einen kurzen Augenblick wird durch sie mehr Leistung abgestrahlt als von allen Sternen im gesamten sichtbaren Universum in Form von elektromagnetischer Strahlung zusammen. Diese Gravitationswellen rasen mit Lichtgeschwindigkeit durch das Weltall und lassen auf ihrem Weg die Raumzeit erzittern.25. November 1915: GW150914 ist schon längst in unserer milchstra-
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg 2 . We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M ⊙ when allowing for large component spins, and to lie between 1.16 and 1.60 M ⊙ (with a total mass 2.73 þ0.04 −0.01 M ⊙ ) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameterΛ are (0,630) when we allow for large component spins, and 300 þ420 −230 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to ( – if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250–2810 .
Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low-and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of ∼2; we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of ∼2.6 and bound the mass of the graviton to m g ≤ 1.76 × 10 −23 eV=c 2 with 90% credibility. We also analyze the properties of the merger remnants by measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr frequency to δf 220 ¼ 0.03 þ0.38 −0.35 for the fundamental quadrupolar mode, and δf 221 ¼ 0.04 þ0.27 −0.32 for the first overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are consistent with tensorial polarizations through a template-independent method. When possible, we assess the validity of general relativity based on collections of events analyzed jointly. We find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics.
The combined observation of gravitational and electromagnetic waves from the coalescence of two neutron stars marks the beginning of multi-messenger astronomy with gravitational waves (GWs). The development of accurate gravitational waveform models is a crucial prerequisite to extract information about the properties of the binary system that generated a detected GW signal. In binary neutron star systems (BNS), tidal effects also need to be incorporated in the modeling for an accurate waveform representation. Building on previous work [Phys. Rev. D96 121501], we explore the performance of inspiral-merger waveform models that are obtained by adding a numerical relativity (NR) based approximant for the tidal part of the phasing (NRTidal) to existing models for nonprecessing and precessing binary black hole systems (SEOBNRv4, PhenomD and PhenomPv2), as implemented in the LSC Algorithm Library Suite. The resulting BNS waveforms are compared and contrasted to target waveforms hybridizing NR waveforms, covering the last ∼ 10 orbits up to merger and extending through the postmerger phase, with inspiral waveforms calculated from 30Hz obtained with TEOBResumS. The latter is a state-of-the-art effective-one-body waveform model that blends together tidal and spin effects. We probe that the combination of the PN-based selfspin terms and of the NRTidal description is necessary to obtain minimal mismatches ( 0.01) and phase differences ( 1 rad) with respect to the target waveforms. However, we also discuss possible improvements and drawbacks of the NRTidal approximant in its current form, since we find that it tends to overestimate the tidal interaction with respect to the TEOBResumS model during the inspiral.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.