A diverse T cell receptor (TCR) repertoire is essential for adaptive immune responses and is generated by somatic recombination of TCRα and TCRβ gene segments in the thymus. Previous estimates of the total TCR diversity have studied the circulating mature repertoire, identifying 1 to 3×10(6) unique TCRβ and 0.5×10(6) TCRα sequences. Here we provide the first estimate of the total TCR diversity generated in the human thymus, an organ which in principle can be sampled in its entirety. High-throughput sequencing of samples from four pediatric donors detected up to 10.3×10(6) unique TCRβ sequences and 3.7×10(6) TCRα sequences, the highest directly observed diversity so far for either chain. To obtain an estimate of the total diversity we then used three different estimators, preseq and DivE, which measure the saturation of rarefaction curves, and Chao2, which measures the size of the overlap between samples. Our results provide an estimate of a thymic repertoire consisting of 40 to 70×10(6) unique TCRβ sequences and 60 to 100×10(6) TCRα sequences. The thymic repertoire is thus extremely diverse. Moreover, extrapolation of the data and comparison with earlier estimates of peripheral diversity also suggest that the thymic repertoire is transient, with different clones produced at different times.
Although mature human FOXP3(+) regulatory T cells are CD127 (IL-7Rα) negative, CD4(+)CD8(+) FOXP3(+) thymocytes express relatively high levels of CD127 and are responsive to IL-7. However, the role of IL-7 in human regulatory T cell development is poorly known. We show that at the CD4(+)CD8(+) stage, FOXP3(+) thymocytes are highly susceptible to apoptosis, and IL-7 selectively rescues them from death, leading to an increased frequency of FOXP3(+) cells. IL-7 also promotes the development of regulatory T cell phenotype by inducing up-regulation of FOXP3(+) and CTLA-4 expression. In contrast, IL-7 does not enhance proliferation of FOXP3(+)thymocytes or induce demethylation of FOXP3(+) regulatory T cell-specific demethylated region. After the CD4(+)CD8(+) stage, the FOXP3(+) thymocytes down-regulate CD127 expression but despite very low levels of CD127, remain responsive to IL-7. These results suggest that IL-7 affects human regulatory T cell development in the thymus by at least 2 distinct mechanisms: suppression of apoptosis and up-regulation of FOXP3(+) expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.