Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roche's GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the identification of additional genera and functional elements, providing a far more complete coverage of the community involved in anaerobic fermentative pathways leading to methane formation.
So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross feeding and competition are important aspects of microbial physiology and these can only be addressed by studying complete communities such as enrichment cultures. Metagenomic sequencing is a powerful tool to characterize such mixed cultures. In the analysis of metagenomic data, well established algorithms exist for the assembly of short reads into contigs and for the annotation of predicted genes. However, the binning of the assembled contigs or unassembled reads is still a major bottleneck and required to understand how the overall metabolism is partitioned over different community members. Binning consists of the clustering of contigs or reads that apparently originate from the same source population. In the present study eight metagenomic samples from the same habitat, a laboratory enrichment culture, were sequenced. Each sample contained 13–23 Mb of assembled contigs and up to eight abundant populations. Binning was attempted with existing methods but they were found to produce poor results, were slow, dependent on non-standard platforms or produced errors. A new binning procedure was developed based on multivariate statistics of tetranucleotide frequencies combined with the use of interpolated Markov models. Its performance was evaluated by comparison of the results between samples with BLAST and in comparison to existing algorithms for four publicly available metagenomes and one previously published artificial metagenome. The accuracy of the new approach was comparable or higher than existing methods. Further, it was up to a 100 times faster. It was implemented in Java Swing as a complete open source graphical binning application available for download and further development ().
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.