Neonatal diabetes mellitus (NDM) is a monogenic form of diabetes occurring mainly in the first 6 months of life. Approximately 30% of transient NDM (TNDM) cases will have an activating mutation in the K ATP channel genes ABCC8 and KCNJ11. The majority of the patients with KCNJ11 mutations who are receiving insulin treatment can be transferred to treatment with sulfonylurea (SU), with an improvement in metabolic control and quality of life. Intermittent continuous glucose monitoring (iCGM) is used to assess the current and retrospective interstitial glucose, providing information such as hypo/hyperglycemia tendency and time on target. This case report describes the use of iCGM in the transition from insulin treatment to glibenclamide in a patient with TNDM caused by a pathogenic variant of KCNJ11. This is the first report of a successful outpatient transition from insulin to glibenclamide, in a Brazilian child with TNDM using iCGM (FreeStyle Libre@). The remote monitoring and online management allowed the patient to safely stay at home during the transition from insulin to SU, especially important in the context of the COVID-19 pandemic. We conclude that iCGM is a helpful tool in cases of NDM and should be used to increase safety and speed up dose adjustments in outpatient transition from insulin to glibenclamide.
Introduction: Among the insulin resistance syndromes that lead to diabetes mellitus in young people, Rabson-Mendenhall syndrome (RMS; OMIM # 262190) is an autosomal recessive inherited disease caused by an insulin receptor mutation (INSR; 147,670). Due to the rarity and complexity of the disease, we have few therapeutic alternatives other than insulin with clinical studies with robust evidence. Some reports suggest the adjunct use of metreleptin, metformin, and pioglitazone with improved glycemic control, however, with results still unsatisfactory for the desirable glycemic targets for this age group. Case Presentation: We report a case of an 11-year-old patient who was diagnosed with RMS at 6 years of age, confirmed through genetic sequencing, with unsatisfactory glycemic control despite the use of >5 IU/kg/day of insulin, pioglitazone, and metformin. To optimize therapy, we used empagliflozin (SGLT2i) to correct hyperglycemia. With the use of the drug, we obtained a decrease of almost 3% in the value of glycated hemoglobin (HbA1c) and about 30% reduction in the total daily dose of insulin. Discussion/Conclusion: In this specific case, considering the glycosuric effects independent of the functionality of insulin receptors (which in this case had partial activity due to the INSR gene mutation), an improvement in glycemic control was obtained, with optimization of HbA1c without documented or reported adverse effects. From this isolated case and understanding the pharmacokinetics of this drug class, the question remains whether it would be possible to use this treatment in other situations of SIR where we also have few therapeutic perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.