The aim of the research was to assess the current trend and variation in rainfall and temperature in the Upper East Region, Ghana, using time series moving average analysis and decomposition methods. Meteorological data obtained from the Ghana Meteorological Agency in Accra, Ghana, from 1954 to 2014 were used in the models. The additive decomposition model was used to analyze the rainfall because the seasonal variation was relatively constant over time, while the multiplicative model was used for both the daytime and nighttime temperatures because their seasonal variations increase over time. The monthly maximum and the minimum values for the entire period were as follows: rainfall 455.50 and 0.00 mm, nighttime temperature 29.10°C and 13.25°C and daytime temperature 41.10°C and 26.10°C, respectively. Also, while rainfall was decreasing, nighttime and daytime temperatures were increasing in decadal times. Since both the daytime and nighttime temperatures were increasing and rainfall was decreasing, climate extreme events such as droughts could result and affect agriculture in the region, which is predominantly rain fed. Also, rivers, dams, and dugouts are likely to dry up in the region. It was also observed that there was much variation in rainfall making prediction difficult. Day temperatures were generally high with the months of March and April have been the highest. The months of December recorded the lowest night temperature. Inhabitants are therefore advised to sleep in well-ventilated rooms during the warmest months and wear protective clothing during the cold months to avoid contracting climate-related diseases.
The effects of processing by autoclaving (AC), soaking (SK), short-term fermentation (S-TF, 4 d) and long-term fermentation (L-TF, 14 d) on the nutritional composition, amino acid profile and some antinutrients were determined for cottonseed meal (CSM), groundnut meal (GNM) and groundnut husk (GH) in this study. After processing, crude protein content improved by 11% after L-TF, and crude lipid content 25% after SK for CSM; crude protein content improved by 27% after S-TF and L-TF, and crude lipid content 13% after SK for GNM. Soaking and fermentation were shown to significantly increase essential amino acid contents by 44% (SK, methionine) in CSM and 46% in GNM (L-TF, histidine). Phosphorus content was reduced by 59% in CSM and 57% in GNM by L-TF. All processing techniques, with the exception of AC, reduced phytic acid and gossypol contents in CSM and GNM. It was concluded that SK and fermentation were simple, cost-effective, and efficient ways to improve the nutritional value of the selected oilseed by-products.
The environmental presence of the oral contraceptive norethindrone (NET) has been reported and shown to have reproductive effects in fish at environmentally realistic exposure levels. The current study examined bioconcentration potential of NET in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Fathead minnows were exposed to 50 μg/l NET for 28 days and allowed to depurate in clean water for 14 days. In a minimized 14-day test design, catfish were exposed to 100 μg/l NET for 7 days followed by 7-day depuration. In the fathead test, tissues (muscle, liver, and kidneys) were sampled during the uptake (days 1, 3, 7, 14, and 28) and depuration (days 35 and 42) phases. In the catfish test, muscle, liver, gill, brain, and plasma were collected during the uptake (days 1, 3, and 7) and depuration (day 14) stages. NET tissue levels were determined by gas chromatography-mass spectrometry (GC-MS). Accumulation of NET in tissues was greatest in liver followed by plasma, gill, brain, and muscle. Tissue-specific bioconcentration factors (BCFs) ranged from 2.6 to 40.8. Although NET has been reported to elicit reproductive effects in fish, the present study indicated a low potential to bioconcentrate in aquatic biota.
Mining of sand and stone from the coasts provides an inexpensive source of materials for the construction industry while providing income to contractors. However, these activities come at a cost to the coastal environment and pose a threat to the tourism industry along the Ghanaian coast. This paper identified the various types of coastal sand and stone mining activities, the level at which they are undertaken and covers the trends in coastal erosion along the coast of Cape Coast, Ghana. ArcGIS (ESRI, Redlands, CA, USA) and Digital Shoreline Analysis System (DSAS; ESRI) tools were used to determine short-term (2005-2012) coastline changes using 2005 and 2012 coastlines data. This study estimates that tippertruck-based beach sand mining activities alone account for the loss of about 285,376 m 3 /year of sand from the littoral zone in the Cape Coast area. It was also established that the average erosion rate for the Cape Coast area within the seven year period is 0.85 m/year with two areas recording high erosion rates of 4.35 m/year and 4.25 m/year. The study concludes that sand mining is the main cause of erosion along the coastline of Cape Coast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.