We consider the sojourn time V in the MIDl1 processor sharing (PS) queue, and
Bandwidth-sharing networks as considered by Roberts and Massoulié [28] (Roberts JW, Massoulié L (1998) Bandwidth sharing and admission control for elastic traffic. Proc. ITC Specialist Seminar, Yokohama, Japan) provide a natural modeling framework for describing the dynamic flow-level interaction among elastic data transfers. Under mild assumptions, it has been established that a wide family of so-called α-fair bandwidth-sharing strategies achieve stability in such networks provided that no individual link is overloaded. In the present paper we focus on bandwidth-sharing networks where the load on one or several of the links exceeds the capacity. To characterize the overload behavior, we examine the fluid limit, which emerges when the flow dynamics are scaled in both space and time. We derive a functional equation characterizing the fluid limit, and show that any strictly positive solution must be unique, which in particular implies the convergence of the scaled number of flows to the fluid limit for nonzero initial states when the load is sufficiently high. For the case of a zero initial state and a zero-degree homogeneous rate allocation function, we show that there exists a linear solution to the fluid-limit equation, and obtain a fixed-point equation for the corresponding asymptotic growth rates. It is proved that a fixed-point solution is also a solution to a related strictly concave optimization problem, and hence exists and is unique. In addition, we establish uniqueness of fluid-model solutions for monotone rate-preserving networks (in particular tree networks).
Abstract-Bandwidth-sharing networks as considered by Massoulié & Roberts provide a natural modeling framework for describing the dynamic flow-level interaction among elastic data transfers. Under mild assumptions, it has been established that a wide family of so-called α-fair bandwidth-sharing strategies achieve stability in such networks provided that no individual link is overloaded.In the present paper we focus on α-fair bandwidth-sharing networks where the load on one or several of the links exceeds the capacity. Evidently, a well-engineered network should not experience overload, or even approach overload, in normal operating conditions. Yet, even in an adequately provisioned system with a low nominal load, the actual traffic volume may significantly fluctuate over time and exhibit temporary surges. Furthermore, gaining insight in the overload behavior is crucial in analyzing the performance in terms of long delays or low throughputs as caused by large queue build-ups. The way in which such rare events tend to occur, commonly involves a scenario where the system temporarily behaves as if it experiences overload.In order to characterize the overload behavior, we examine the fluid limit, which emerges from a suitably scaled version of the number of flows of the various classes. Focusing on linear solutions to the fluid-limit equation, we derive a fixed-point equation for the corresponding asymptotic growth rates. It is proved that a fixed-point solution is also a solution to a related strictly concave optimization problem, and hence exists and is unique. The results are illustrated for linear topologies and star networks as two important special cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.