In search for local entomopathogenic nematode (EPN) species as a biological control agent of lepidopterous insect pests of corn, a survey for EPN in the major islands in the Philippines was conducted. Seven EPN populations from 279 soil samples were isolated using Ostrinia furnacalis, the key target insect pest of corn in the country, as bait. Analysis of the ITS1-5.8S-ITS2 ribosomal DNA sequence revealed the presence of Steinernema abbasi, Steinernema minutum, Steinernema tami, and Heterorhabditis indica. The pathogenicity of these EPN was tested in Ostrinia furnacalis, Spodoptera litura, and Helicoverpa armigera larvae under laboratory conditions. All the EPN isolates were pathogenic to the lepidopteran species with, H. indica PBCB and S. abbasi MBLB exhibiting the highest virulence (88%-99.33% and 90%-100% mortality, respectively) at 48 hr post infection (HPI) and thus, further studies were done on these two EPN. The highest penetration rate at 48 HPI was observed in H. armigera infected with S. abbasi MBLB (28.15%), while the lowest was in O. furnacalis infected with H. indica PBCB (14.25%). Nonetheless, based on LC 50 at 48 HPI, H. indica PBCB was most virulent to S. litura (8.89 IJ per larva), but not significantly different from O. furnacalis (10.52 IJ per larva). Steinernema abbasi MBLB was most virulent to O. furnacalis (10.98 IJ per larva), but not significantly different to S. litura (17.08 IJ per larva). LT 50 estimates showed that O. furnacalis was significantly the most susceptible to H. indica PBCB (21.90 hr) and S. abbasi (21.18 hr). Our results suggest that H. indica PBCB and S. abbasi MBLB are good candidates as biological control agents against these insect pests of corn. Moreover, O. furnacalis as alternative bait for EPN was discussed. To date, this is the most extensive research on Philippine EPN, comprised of wide sampling coverage, molecular identification and bioefficacy assays.
Forty-two Rhizoctonia isolates were collected from rice, mung bean, and grasses from Laguna, Philippines. Sixteen isolates were binucleate Rhizoctonia (BNR), while 26 were multinucleate Rhizoctonia (MNR). BNR isolates produced white to brown, small sclerotia (<1.0 mm) except for mung bean isolates. Twenty MNR isolates produced big (>1.0 mm), light to dark brown sclerotia, three produced salmon-colored masses in the medium, and three did not produce sclerotia. Twenty-three MNR isolates were identified as R. solani AG1-IA using specific primers. Deduced Internal Transcribed Spacer (ITS) sequences of BNR isolates D1FL, NVL, and ScNL shared 100, 97, and 100% identity with R. oryzae-sativae, respectively, while MNR isolates BMgL, IbMgL, and MaSL that produced salmon-colored masses shared 100, 90, and 100% identity with R. oryzae, respectively. Preliminary analysis of the DNA fingerprint patterns generated by repetitive-element PCR (rep-PCR) clustered the 42 isolates into three: R. solani, R. oryzae-sativae, and R. oryzae, together with Ceratobasidium sp. R. solani isolates were pathogenic on rice (TN1), barnyard grass, mungbean (Pagasa 3), and tomato (Athena), while R. oryzae and R. oryzae-sativae isolates were only pathogenic on rice, Echinochloa crus-galli, and tomato. R. solani and R. oryzae were found to be more virulent than R. oryzae-sativae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.