Simple stress or necrotic cell death with subsequent release of damage-associated molecular patterns (DAMPs) is a characteristic feature of most advanced tumors. DAMPs within the tumor microenvironment stimulate tumor-associated cells, including dendritic cells and mesenchymal stromal cells (MSCs). The presence of tumor-infiltrating MSCs is associated with tumor progression and metastasis. Oxidized necrotic material loses its stimulatory capacity for MSCs. As a DAMP, S100A4 is sensitive to oxidation whereas uric acid (UA) acts primarily as an antioxidant. We tested these two biologic moieties separately and in combination for their activity on MSCs. Similar to necrotic tumor material, S100A4 and UA both dose-dependently induced chemotaxis of MSCs with synergistic effects when combined. Substituting for UA, alternative antioxidants (vitamin C, DTT, and N-acetylcysteine) also enhanced the chemotactic activity of S100A4 in a synergistic manner. This emphasizes the reducing potential of UA being, at least in part, responsible for the observed synergy. With regard to MSC proliferation, both S100A4 and UA inhibited MSCs without altering survival or inducing differentiation toward adipo-, osteo-, or chondrocytes. In the presence of S100A4 or UA, MSCs gained an immunosuppressive capability and stably induced IL-10– and IDO-expressing lymphocytes that maintained their phenotype following proliferation. We have thus demonstrated that both S100A4 and UA act as DAMPs and, as such, may play a critical role in promoting some aspects of MSC-associated immunoregulation. Our findings have implications for therapeutic approaches targeting the tumor microenvironment and addressing the immunosuppressive nature of unscheduled cell death within the tumor microenvironment.
IntroductionMSCs are often found within tumors, promote cancer progression and enhance metastasis. MSCs can act as immuosuppressive cells, partially due to the expression of the enzyme indoleamine dioxygenase (IDO) which converts tryptophan to kynurenine. Decreased concentration of tryptophan and increased kynurenine, both interfere with effective immune response. Damage associated molecular patterns (DAMPs) including ATP are found within the tumor microenvironment, attract MSCs, and influence their biology.MethodsBone marrow derived MSCs were exposed to ATP for 4 days, in the presence of 100 ng IFNγ/mL. Intracellular expression of IDO in MSCs was assessed by FACS. Conditioned media from thus stimulated MSCs was analyzed for kynurenine content and its suppressive effect on lymphocyte proliferation. Apyrase or P2 × 7‐receptor antagonist (AZ 11645373) were applied in order to inhibit ATP induced effect on MSCs.ResultsWe demonstrate, that ATP at concentrations between 0.062 and 0.5 mM increases dose dependently the expression of IDO in MSCs with subsequent increased kynurenine concentrations within the supernatant at about 60%. This effect could be abolished completely in the presence of ATP degrading enzyme (apyrase) or when MSCs were pretreated with a P2 × 7‐receptor antagonist (AZ 11645373). Consistently, supernatants from MSCs stimulated with ATP, inhibited lymphocyte proliferation from 65% to 16%.ConclusionsWe characterized ATP as a DAMP family member responsible for necrosis‐induced immunomodulation. Given the increased concentration of DAMPs within tumor tissue and the fact that DAMPs can act as chemotattractants to MSCs, our results have implications for therapeutic strategies targeting the tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.