Active faults accommodate tectonic plate motion through different slip modes, some stable and aseismic, others characterized by the occurrence of large earthquakes after long periods of inactivity. Although the slip mode estimation is of primary importance to improve seismic hazard assessment, this parameter inferred today from geodetic observations needs to be better constrained over many seismic cycles. From an analytical formulation developed for analyzing fault scarp formation and degradation, we show that the final topographic shape generated by one earthquake rupture or by creep (i.e., continuous slip) deviates by as much as 10–20%. This result opens up the theoretical possibility of inverting the number of earthquakes and their sizes from scarp morphologies. Our approach highlights the importance of trade-offs between fault slip history and diffusive processes. An identical topographic profile can be obtained either with stable fault creep together with rapid erosion, or with a single earthquake rupture followed by slow erosion. Our findings reveal that the previously noticed variation of the diffusion coefficient with the age of the scarp may be an artifact related to the history and mechanism of fault slip. These inferences, derived from the simplest possible diffusion model, are likely to be even more pronounced in nature.
Active faults accommodate tectonic plate motion through different slip modes, some stable and aseismic, others characterized by the occurrence of large earthquakes after long periods of inactivity. Although the slip mode estimation is of primary importance to improve seismic hazard assessment, this parameter inferred today from geodetic observations needs to be better constrained over many seismic cycles. From an analytical formulation developed for analyzing fault scarp formation and degradation in loosely consolidated material, we show that the final topographic shape generated by one earthquake rupture or by creep (i.e., continuous slip) deviates by as much as 10–20%, despite a similar cumulated slip and a constant diffusion coefficient. This result opens up the theoretical possibility of inverting, not only the cumulated slip or averaged slip rate, but also the number of earthquakes and their sizes from scarp morphologies. This approach is all the more relevant as the number of rupture events is limited. Estimating the fault slip history beyond a dozen earthquakes becomes very difficult as the effect of erosion on scarp morphology prevails. Our modeling also highlights the importance of trade-offs between fault slip history and diffusive processes. An identical topographic profile can be obtained either with a stable fault creep associated with rapid erosion, or a single earthquake rupture followed by slow erosion. These inferences, derived from the simplest possible diffusion model, are likely to be even more pronounced in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.