Volatile fatty acids (VFAs) are intermediate products in anaerobic digestion. The effect of substrate loading or inoculum to substrate ratio (ISR), the addition of methanogen inhibitor, O 2 presence, control the reactor's pH, and inoculum adaptation on the VFAs production from food waste through acidogenesis process was investigated in this study. Addition of 2-bromoethane sulfonic (BES) as methanogen inhibitor suppressed VFA consumption by methanogens at ISR 1:1. At higher substrate loading (ISR 1:3), methane production can be suppressed even without the addition of BES. However, at high substrate loading, controlling the pH during acidogenesis is important to achieve high VFAs yield. Acclimatization of inoculum is also one of the strategies to achieve high VFA yield. The highest VFAs yield obtained in this work was 0.8 g VFA/g VS added at ISR 1:3, controlled pH at 6, with the presence of initial O 2 (headspace unflushed).
Chicken feathers are available in large quantities around the world causing environmental challenges. The feathers are composed of keratin that is a recalcitrant protein and is hard to degrade. In this work, chicken feathers were aerobically pretreated for 2-8 days at total solid concentrations of 5, 10, and 20 % by Bacillus sp. C, a bacterium that produces both α- and β-keratinases. Then, the liquid fraction (feather hydrolysate) as well as the total broth (liquid and solid fraction of pretreated feathers) was used as substrates for biogas production using anaerobic sludge or bacteria granules as inoculum. The biological pretreatment of feather waste was productive; about 75 % of feather was converted to soluble crude protein after 8 days of degradation at initial feather concentration of 5 %. Bacteria granules performed better during anaerobic digestion of untreated feathers, resulting in approximately two times more methane yield (i.e., 199 mlCH/gVS compared to 105 mlCH/gVS when sludge was used). Pretreatment improved methane yield by 292 and 105 % when sludge and granules were used on the hydrolysate. Bacteria granules worked effectively on the total broth, yielded 445 mlCH/gVS methane, which is 124 % more than that obtained with the same type of inoculum from untreated feather.
In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH/gVS/d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.