Summary Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.
Highlights d Blood cell traits differ by ancestry and are subject to selective pressure d We assessed 15 blood cell traits in 746,667 participants from 5 global populations d We identified more than 5,500 associations, including 100 associations not found in Europeans d These analyses improved risk prediction and identified potential causal variants
Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including 563,946 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering the full allele frequency spectrum of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood cell traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell GWAS to interrogate clinically meaningful variants across the full allelic spectrum of human variation.
Background and Purpose: Stroke is the leading cause of death and long-term disability worldwide. Previous genome-wide association studies identified 51 loci associated with stroke (mostly ischemic) and its subtypes among predominantly European populations. Using whole-genome sequencing in ancestrally diverse populations from the Trans-Omics for Precision Medicine (TOPMed) Program, we aimed to identify novel variants, especially low-frequency or ancestry-specific variants, associated with all stroke, ischemic stroke and its subtypes (large artery, cardioembolic, and small vessel), and hemorrhagic stroke and its subtypes (intracerebral and subarachnoid). Methods: Whole-genome sequencing data were available for 6833 stroke cases and 27 116 controls, including 22 315 European, 7877 Black, 2616 Hispanic/Latino, 850 Asian, 54 Native American, and 237 other ancestry participants. In TOPMed, we performed single variant association analysis examining 40 million common variants and aggregated association analysis focusing on rare variants. We also combined TOPMed European populations with over 28 000 additional European participants from the UK BioBank genome-wide array data through meta-analysis. Results: In the single variant association analysis in TOPMed, we identified one novel locus 13q33 for large artery at whole-genome-wide significance ( P <5.00×10 −9 ) and 4 novel loci at genome-wide significance ( P <5.00×10 − 8 ), all of which need confirmation in independent studies. Lead variants in all 5 loci are low-frequency but are more common in non-European populations. An aggregation of synonymous rare variants within the gene C6orf26 demonstrated suggestive evidence of association for hemorrhagic stroke ( P <3.11×10 − 6 ). By meta-analyzing European ancestry samples in TOPMed and UK BioBank, we replicated several previously reported stroke loci including PITX2 , HDAC9 , ZFHX3 , and LRCH1 . Conclusions: We represent the first association analysis for stroke and its subtypes using whole-genome sequencing data from ancestrally diverse populations. While our findings suggest the potential benefits of combining whole-genome sequencing data with populations of diverse genetic backgrounds to identify possible low-frequency or ancestry-specific variants, they also highlight the need to increase genome coverage and sample sizes.
Familial relatedness (FR) and population structure (PS) are two major sources for genetic correlation. In the human population, both FR and PS can further break down into additive and dominant components to account for potential additive and dominant genetic effects. In this study, besides the classical additive genomic relationship matrix, a dominant genomic relationship matrix is introduced. A link between the additive/dominant genomic relationship matrices and the coancestry (or kinship)/double coancestry coefficients is also established. In addition, a way to separate the FR and PS correlations based on the estimates of coancestry and double coancestry coefficients from the genomic relationship matrices is proposed. A unified linear mixed model is also developed, which can account for both the additive and dominance effects of FR and PS correlations as well as their possible random interactions. Finally, this unified linear mixed model is applied to analyze two study cohorts from UK Biobank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.