Plant carotenoids have unique physiological roles related to specific plastid suborganellar locations. Carotenoid metabolic engineering could enhance plant adaptation to climate change and improve food security and nutritional value. However, lack of fundamental knowledge on carotenoid pathway localization limits targeted engineering. Phytoene synthase (PSY), a major rate-controlling carotenoid enzyme, is represented by multiple isozymes residing at unknown plastid sites. In maize (Zea mays), the three isozymes were transiently expressed and found either in plastoglobuli or in stroma and thylakoid membranes. PSY1, with one to two residue modifications of naturally occurring functional variants, exhibited altered localization, associated with distorted plastid shape and formation of a fibril phenotype. Mutating the active site of the enzyme reversed this phenotype. Discovery of differential PSY locations, linked with activity and isozyme type, advances the engineering potential for modifying carotenoid biosynthesis.
A p53-derived C-terminal peptide induced rapid apoptosis in breast cancer cell lines carrying endogenous p53 mutations or overexpressed wild-type (wt) p53 but was not toxic to nonmalignant human cell lines containing wt p53. Apoptosis occurred through a Fas/APO-1 signaling pathway involving increased extracellular levels of Fas/FasL in the absence of protein synthesis, as well as activation of a Fas/APO-1-specific protease, FLICE. The peptide activity was p53-dependent, and it had no effect in three tumor cell lines with null p53. Furthermore, the C-terminal peptide bound to p53 protein in cell extracts. Thus, p53-dependent, Fas/APO-1 mediated apoptosis can be induced in breast cancer cells with mutant p53 similar to the recently described Fas/APO-1 induced apoptosis by wt p53. However, mutant p53 without p53 peptide does not induce a Fas/ APO-1 activation or apoptosis. Docking of the computed low energy conformations for the C-terminal peptide with those for a recently defined proline-rich regulatory region from the N-terminal domain of p53 suggests a unique low energy complex between the two peptide domains. The selective and rapid induction of apoptosis in cancer cells carrying p53 abnormalities may lead to a novel therapeutic modality.
We have explored the utility, strength, and limitation of through-space exciton-coupled circular dichroism in determination of the secondary structure of optically active chromophoric nanoarrays using the example of end-capped porphyrin- and metalloporphyrin-oligodeoxynucleotide conjugates. We put special emphasis on the explanation of the origin and significance of the distinctive multiple bands in the CD spectra (trisignate and tetrasignate CD bands). Such CD profiles are often observed in chiral aggregates or multichromophoric arrays but have never before been studied in detail. We found that variation of temperature and ionic strength has a profound effect on the geometry of the porphyrin-DNA conjugates and thus the nature of electronic interactions. At lower temperatures and in the absence of NaCl all three 5'-DNA-porphyrin conjugates display negative bisignate CD exciton couplets of variable intensity in the Soret region resulting from through-space interaction between the electric transition dipole moments of the two end-capped porphyrins. As the temperature is raised these exciton couplets are transformed into single positive bands originating from the porphyrin-single-strand DNA interactions. At higher ionic strengths and low temperatures, multisignate CD bands are observed in the porphyrin Soret region. These CD signature bands originate from a combination of intermolecular, end-to-end porphyrin-porphyrin stacking between duplexes and porphyrin-DNA interactions. The intermolecular aggregation was confirmed by fluorescence and absorption spectroscopy and resonance light scattering. DeVoe theoretical CD calculations, in conjunction with molecular dynamics simulations and Monte Carlo conformational searches, were used to mimic the observed bisignate exciton-coupled CD spectra as well as multiple CD bands. Calculations correctly predicted the sign and shape of the experimentally observed CD spectra. These studies reveal that the exciton-coupled circular dichroism is a very useful technique for the determination of the structure of optically active arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.