PAX7 encodes a transcription factor essential in neural crest formation, myogenesis, and pituitary lineage specification. Pax7 null mice fail to thrive and exhibit muscle weakness, dying within 3 weeks. We describe a human autosomal-recessive syndrome, with failure to thrive, severe global developmental delay, microcephaly, axial hypotonia, pyramidal signs, dystonic postures, seizures, irritability, and self-mutilation. Aside from low blood carnitine levels, biochemical and metabolic screen was normal, with growth hormone deficiency in one patient. Electromyography was normal, with no specific findings in brain MRI/MRS yet nondemonstrable neuropituitary, a finding of unclear significance. Muscle biopsy showed unaffected overall organization of muscle fibers, yet positive fetal alpha myosin staining, suggesting regeneration. Homozygosity mapping with whole-exome sequencing identified a single disease-associated mutation in PAX7, segregating as expected in the kindred with no homozygosity in 200 ethnically matched controls. Transfection experiments showed that the PAX7 splice-site mutation putatively causes nonsense-mediated mRNA decay affecting onlyPAX7 isoform 3. This isoform, expressed specifically in brain, skeletal muscle and testes, is the sole Pax7 variant normally found in mice. The human muscle phenotype is in line with that in conditional Pax7 null mutant mice, where initial aberrant histological findings resolve postnatally through muscle regeneration.
Attention-deficit hyperactivity disorder (ADHD) is a common childhood-onset psychiatric disorder characterized by inattention, impulsivity and hyperactivity. ADHD exhibits substantial heritability, with rare monogenic variants contributing to its pathogenesis. Here we demonstrate familial ADHD caused by a missense mutation in CDH2, which encodes the adhesion protein N-cadherin, known to play a significant role in synaptogenesis; the mutation affects maturation of the protein. In line with the human phenotype, CRISPR/Cas9-mutated knock-in mice harboring the human mutation in the mouse ortholog recapitulated core behavioral features of hyperactivity. Symptoms were modified by methylphenidate, the most commonly prescribed therapeutic for ADHD. The mutated mice exhibited impaired presynaptic vesicle clustering, attenuated evoked transmitter release and decreased spontaneous release. Specific downstream molecular pathways were affected in both the ventral midbrain and prefrontal cortex, with reduced tyrosine hydroxylase expression and dopamine levels. We thus delineate roles for CDH2-related pathways in the pathophysiology of ADHD.
Myopathy is the main adverse effect of the widely prescribed statin drug class. Statins exert their beneficial effect by inhibiting HMG CoA-reductase, the rate-controlling enzyme of the mevalonate pathway. The mechanism of statin myopathy is yet to be resolved, and its treatment is insufficient. Through homozygosity mapping and whole exome sequencing, followed by functional analysis using confocal microscopy and biochemical and biophysical methods, we demonstrate that a distinct form of human limb girdle muscular disease is caused by a pathogenic homozygous loss-of-function missense mutation in HMG CoA reductase ( HMGCR ), encoding HMG CoA-reductase . We biochemically synthesized and purified mevalonolactone, never administered to human patients before, and establish the safety of its oral administration in mice. We then show that its oral administration is effective in treating a human patient with no significant adverse effects. Furthermore, we demonstrate that oral mevalonolactone resolved statin-induced myopathy in mice. We conclude that HMGCR mutation causes a late-onset severe progressive muscular disease, which shows similar features to statin-induced myopathy. Our findings indicate that mevalonolactone is effective both in the treatment of hereditary HMGCR myopathy and in a murine model of statin myopathy. Further large clinical trials are in place to enable the clinical use of mevalonolactone both in the rare orphan disease and in the more common statin myopathy.
Proteasome 26S, the eukaryotic proteasome, serves as the machinery for cellular protein degradation. It is composed of the 20S core particle and one or two 19S regulatory particles, composed of a base and a lid. To date, several human diseases have been associated with mutations within the 26S proteasome subunits; only one of them affects a base subunit. We now delineate an autosomal recessive syndrome of failure to thrive, severe developmental delay and intellectual disability, spastic tetraplegia with central hypotonia, chorea, hearing loss, micropenis and undescended testes, as well as mild elevation of liver enzymes. None of the affected individuals achieved verbal communication or ambulation. Ventriculomegaly was evident on MRI. Homozygosity mapping combined with exome sequencing revealed a disease‐associated p.I328T PSMC1 variant. Protein modeling demonstrated that the PSMC1 variant is located at the highly conserved putative ATP binding and hydrolysis domain, and is suggested to interrupt a hydrophobic core within the protein. Fruit flies in which we silenced the Drosophila ortholog Rpt2 specifically in the eye exhibited an apparent phenotype that was highly rescued by the human wild‐type PSMC1, yet only partly by the mutant PSMC1, proving the functional effect of the p.I328T disease‐causing variant.
Hyperinsulinism/hyperammonemia (HI/HA) syndrome has been known to be caused by dominant gain‐of‐function mutations in GLUD1, encoding the mitochondrial enzyme glutamate dehydrogenase. Pathogenic GLUD1 mutations enhance enzymatic activity by reducing its sensitivity to allosteric inhibition by GTP. Two recent independent studies showed that a similar HI/HA phenotype can be caused by biallelic mutations in SLC25A36, encoding pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine and guanine nucleotides across the inner mitochondrial membrane: one study reported a single case caused by a homozygous truncating mutation in SLC25A36 resulting in lack of expression of SLC25A36 in patients' fibroblasts. A second study described two siblings with a splice site mutation in SLC25A36, causing reduction of mitochondrial GTP content, putatively leading to hyperactivation of glutamate dehydrogenase. In an independent study, through combined linkage analysis and exome sequencing, we demonstrate in four individuals of two Bedouin Israeli related families the same disease‐causing SLC25A36 (NM_018155.3) c.284 + 3A > T homozygous splice‐site mutation found in the two siblings. We demonstrate that the mutation, while causing skipping of exon 3, does not abrogate expression of mRNA and protein of the mutant SLC25A36 in patients' blood and fibroblasts. Affected individuals had hyperinsulinism, hyperammonemia, borderline low birth weight, tonic–clonic seizures commencing around 6 months of age, yet normal intellect and no significant other morbidities. Chronic constipation, hypothyroidism, and developmental delay previously described in a single patient were not found. We thus verify that biallelic SLC25A36 mutations indeed cause HI/HA syndrome and clearly delineate the disease phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.