Saliva based diagnostics is a rapidly evolving field due to the large diagnostic potential and simple sample collection. Currently only few individual molecules were investigated for their diagnostic capabilities in saliva. A systematic comparison of IgG antibody profiles in saliva and plasma is still missing in scientific literature. Our hypothesis is that IgG profiles in plasma and saliva are highly similar for each individual. As a consequence, one could implement practically any plasma based IgG assay (classical serology) as saliva based assay. In other words, the IgG antibodies found in blood are also accessible from saliva. We confirm our hypothesis by comparing IgG reactivities towards protein and peptide antigens. We isolated saliva IgG with high purity and demonstrate that plasma IgG reactivities (classical serology) can be inferred from saliva. As a showcase we perform Hepatitis B virus antibody (plasma-)titer determination from saliva. Additionally we show that plasma and saliva IgG profiles of 20 individuals are highly similar for 256 peptide antigens and match (unsupervised) with high probabilities. Finally, we argue for generalisation to the complete IgG antibody profile. The presented findings could contribute greatly to the development of saliva based diagnostic methods of numerous antibody based tests.
Author contributions: M.P. took care of the sample preparation, selection of patients according to inclusion criteria, contributed to the design of the arrays, selection of allergens, analysis of data and interpretation of the results and writing of the manuscript. F.S. processed the experimental data and did statistical analysis and R.S. contributed to prepare the samples, Accepted Article This article is protected by copyright. All rights reserved. IgG purification and subsequent quantification, to the processing of the experimental data and contributed to the methods section of the manuscript. K.S. contributed to sample collection and preparation and selection of patients according to inclusion criteria. K. L.B. and C.S.H. helped in the design and analysis and interpretation of the peptide chip. C.B. was involved in the clinical trial and provided the clinical data Z.S. as PI served responsible for design, conduction of the clinical trial, provided the samples. A.W. contributed to the design of the study, design of arrays, analysis of data and interpretation of the results. S.W. provided the draft genome of Dermatophagoides farinae. T.E. and Z.S. conceived the present idea and T.E. designed the study, contributed to manuscript´s generation and was involved in data analysis and supervised the whole project.
New minimal invasive diagnostic methods for early detection of lung cancer are urgently needed. It is known that the immune system responds to tumors with production of tumor-autoantibodies. Protein microarrays are a suitable highly multiplexed platform for identification of autoantibody signatures against tumor-associated antigens (TAA). These microarrays can be probed using 0.1 mg immunoglobulin G (IgG), purified from 10 µL of plasma. We used a microarray comprising recombinant proteins derived from 15,417 cDNA clones for the screening of 100 lung cancer samples, including 25 samples of each main histological entity of lung cancer, and 100 controls. Since this number of samples cannot be processed at once, the resulting data showed non-biological variances due to “batch effects”. Our aim was to evaluate quantile normalization, “distance-weighted discrimination” (DWD), and “ComBat” for their effectiveness in data pre-processing for elucidating diagnostic immune-signatures. “ComBat” data adjustment outperformed the other methods and allowed us to identify classifiers for all lung cancer cases versus controls and small-cell, squamous cell, large-cell, and adenocarcinoma of the lung with an accuracy of 85%, 94%, 96%, 92%, and 83% (sensitivity of 0.85, 0.92, 0.96, 0.88, 0.83; specificity of 0.85, 0.96, 0.96, 0.96, 0.83), respectively. These promising data would be the basis for further validation using targeted autoantibody tests.
A combined approach to signal enhancement in fluorescence affinity biosensors and assays is reported. It is based on the compaction of specifically captured target molecules at the sensor surface followed by optical probing with a tightly confined surface plasmon (SP) field. This concept is utilized by using a thermoresponsive hydrogel (HG) binding matrix that is prepared from a terpolymer derived from poly(N-isopropylacrylamide) (pNIPAAm) and attached to a metallic sensor surface. Epi-illumination fluorescence and SP-enhanced total internal reflection fluorescence readouts of affinity binding events are performed to spatially interrogate the fluorescent signal in the direction parallel and perpendicular to the sensor surface. The pNIPAAm-based HG binding matrix is arranged in arrays of sensing spots and employed for the specific detection of human IgG antibodies against the Epstein–Barr virus (EBV). The detection is performed in diluted human plasma or with isolated human IgG by using a set of peptide ligands mapping the epitope of the EBV nuclear antigen. Alkyne-terminated peptides were covalently coupled to the pNIPAAm-based HG carrying azide moieties. Importantly, using such low-molecular-weight ligands allowed preserving the thermoresponsive properties of the pNIPAAm-based architecture, which was not possible for amine coupling of regular antibodies that have a higher molecular weight.
Predictive preventive personalized medicine Liver cancer is the fifth most common form of cancer worldwide [1], with an incidence rate almost equals the mortality rate and ranks 3 rd among causes of cancer related death [2]. The coexistence of two life threatening conditions, cancer and liver cirrhosis makes the staging challenging. However, there are some staging systems, e.g. the Barcelona staging system for Hepatocellular carcinoma (HCC) [3], that suggest treatment options and management. Whereas diagnosis in early stages gives hope for a curative outcome, the treatment regime for around 80 % [2] of the patients classified as severe stages only gears towards palliation [4]. An intra-arterial radiation approach, radioembolisation (RE) is ubiquitously applied as one of palliative approaches. Although, in general RE shows promising results in intermediate and advanced stage HCC [5], individual treatment outcomes are currently unpredictable. Corresponding stratification criteria are still unclear. We hypothesised that individual radioresistance/radiosensitivity may play a crucial role in treatment response towards RE strongly influencing individual outcomes. Further, HCC represents a highly heterogeneous group of patients which requires patient stratification according to clear criteria for treatment algorithms to be applied individually. Multilevel diagnostic approach (MLDA) is considered helpful to set-up optimal predictive and prognostic biomarker panel for individualised application of radioembolisation. Besides comprehensive medical imaging, our MLDA includes non-invasive multi-omics and sub-cellular imaging. Individual patient profiles are expected to give a clue to targeting shifted molecular pathways, individual RE susceptibility, treatment response. Hence, a dysregulation of the detoxification pathway (SOD2/Catalase) might indicate possible adverse effects of RE, and highly increased systemic activities of matrix metalloproteinases indicate an enhanced tumour aggressiveness and provide insights into molecular mechanisms/targets. Consequently, an optimal set-up of predictive and prognostic biomarker panels may lead to the changed treatment paradigm from untargeted "treat and wait" to the cost-effective predictive, preventive and personalised approach, improving the life quality and life expectancy of HCC patients. Keywords: Market access, Value, Strategy, Companion diagnostics, Cost-effectiveness, Reimbursement, Health technology assessment, Economic models, Predictive preventive personalized medicine Achieving and sustaining seamless "drug -companion diagnostic" market access requires a sound strategy throughout a product life cycle, which enables timely creation, substantiation and communication of value to key stakeholders [1, 2]. The study aims at understanding the root-cause of market access inefficiencies of companies by gazing at the "Rx-CDx" co-development process through the prism of "value", and developing a perfect co-development scenario based on the literature review and discussions with the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.