Background The SAVVY project aims to improve the analyses of adverse events (AEs), whether prespecified or emerging, in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events (CEs). Although statistical methodologies have advanced, in AE analyses, often the incidence proportion, the incidence density, or a non-parametric Kaplan-Meier estimator are used, which ignore either censoring or CEs. In an empirical study including randomized clinical trials from several sponsor organizations, these potential sources of bias are investigated. The main purpose is to compare the estimators that are typically used to quantify AE risk within trial arms to the non-parametric Aalen-Johansen estimator as the gold-standard for estimating cumulative AE probabilities. A follow-up paper will consider consequences when comparing safety between treatment groups. Methods Estimators are compared with descriptive statistics, graphical displays, and a more formal assessment using a random effects meta-analysis. The influence of different factors on the size of deviations from the gold-standard is investigated in a meta-regression. Comparisons are conducted at the maximum follow-up time and at earlier evaluation times. CEs definition does not only include death before AE but also end of follow-up for AEs due to events related to the disease course or safety of the treatment. Results Ten sponsor organizations provided 17 clinical trials including 186 types of investigated AEs. The one minus Kaplan-Meier estimator was on average about 1.2-fold larger than the Aalen-Johansen estimator and the probability transform of the incidence density ignoring CEs was even 2-fold larger. The average bias using the incidence proportion was less than 5%. Assuming constant hazards using incidence densities was hardly an issue provided that CEs were accounted for. The meta-regression showed that the bias depended mainly on the amount of censoring and on the amount of CEs. Conclusions The choice of the estimator of the cumulative AE probability and the definition of CEs are crucial. We recommend using the Aalen-Johansen estimator with an appropriate definition of CEs whenever the risk for AEs is to be quantified and to change the guidelines accordingly.
Safety analyses of adverse events (AEs) are important in assessing benefit–risk of therapies but are often rather simplistic compared to efficacy analyses. AE probabilities are typically estimated by incidence proportions, sometimes incidence densities or Kaplan–Meier estimation are proposed. These analyses either do not account for censoring, rely on a too restrictive parametric model, or ignore competing events. With the non‐parametric Aalen‐Johansen estimator as the “gold standard”, that is, reference estimator, potential sources of bias are investigated in an example from oncology and in simulations, for both one‐sample and two‐sample scenarios. The Aalen‐Johansen estimator serves as a reference, because it is the proper non‐parametric generalization of the Kaplan–Meier estimator to multiple outcomes. Because of potential large variances at the end of follow‐up, comparisons also consider further quantiles of the observed times. To date, consequences for safety comparisons have hardly been investigated, the impact of using different estimators for group comparisons being unclear. For example, the ratio of two both underestimating or overestimating estimators may not be comparable to the ratio of the reference, and our investigation also considers the ratio of AE probabilities. We find that ignoring competing events is more of a problem than falsely assuming constant hazards by the use of the incidence density and that the choice of the AE probability estimator is crucial for group comparisons.
The assessment of safety is an important aspect of the evaluation of new therapies in clinical trials, with analyses of adverse events being an essential part of this. Standard methods for the analysis of adverse events such as the incidence proportion, that is the number of patients with a specific adverse event out of all patients in the treatment groups, do not account for both varying follow‐up times and competing risks. Alternative approaches such as the Aalen–Johansen estimator of the cumulative incidence function have been suggested. Theoretical arguments and numerical evaluations support the application of these more advanced methodology, but as yet there is to our knowledge only insufficient empirical evidence whether these methods would lead to different conclusions in safety evaluations. The Survival analysis for AdVerse events with VarYing follow‐up times (SAVVY) project strives to close this gap in evidence by conducting a meta‐analytical study to assess the impact of the methodology on the conclusion of the safety assessment empirically. Here we present the rationale and statistical concept of the empirical study conducted as part of the SAVVY project. The statistical methods are presented in unified notation, and examples of their implementation in R and SAS are provided.
The SAVVY project aims to improve the analyses of adverse events (AEs) in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events (CEs). This paper summarizes key features and conclusions from the various SAVVY papers. Through theoretical investigations using simulations and in an empirical study including randomized clinical trials from several sponsor organisations, biases from ignoring varying follow-up times or CEs are investigated. The bias of commonly used estimators of the absolute and relative AE risk is quantified. Furthermore, we provide a cursory assessment of how pertinent guidelines for the analysis of safety data deal with the features of varying follow-up time and CEs. SAVVY finds that for both, avoiding bias and categorization of evidence with respect to treatment effect on AE risk into categories, the choice of the estimator is key and more important than features of the underlying data such as percentage of censoring, CEs, amount of follow-up, or value of the gold-standard. The choice of the estimator of the cumulative AE probability and the definition of CEs are crucial. SAVVY recommends using the Aalen-Johansen estimator (AJE) with an appropriate definition of CEs whenever the risk for AEs is to be quantified. There is an urgent need to improve the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.