Epigenetic aberrations are increasingly regarded as key factors in cancer progression. Recently, deregulation of histone acetyltransferases (HATs) has been linked to several types of cancer. Monocytic leukemia zinc finger protein (MOZ) is a member of the MYST family of HATs, which regulate gene expression in cell proliferation and differentiation. Deregulation of these processes through constitutively active MOZ fusion proteins gives rise to the formation of leukemic stem cells, rendering MOZ an excellent target for treating myeloid leukemia. The authors implemented a hit discovery campaign to identify small-molecule inhibitors of MOZ-HAT activity. They developed a robust, homogeneous assay measuring the acetylation of synthetic histone peptides. In a primary screening campaign testing 243 000 lead-like compounds, they identified inhibitors from several chemical classes. Secondary assays were used to eliminate assay-interfering compounds and prioritize confirmed hits. This study establishes a new high-throughput assay for HAT activity and could provide the foundation for the development of a new class of drugs for the treatment of leukemias.
Droplet based microfluidics are promising new tools for biological and chemical assays. In this paper, a high throughput and high sensitivity microfluidic droplet platform is described for in vitro protein expression using crude Escherichia coli S30 extract. A flow-focusing polymethylmethacrylate (PMMA) microchip was designed and integrated with different functions involving droplet generation, storage, separation and detection. The material used for the chip is superior to the previously tested polydimethylsiloxane (PDMS) due to its mechanical and chemical properties. Droplet formation characteristics such as size and generation rate are investigated systematically. The effect of surfactants Abil EM90 and Span80 in the oil phase on droplet formation and optical detection is also studied. The performance of the system is demonstrated by the high throughput and stable droplet generation and ultralow detection limit. The robustness of the system is also demonstrated by the successful synthesis of a green fluorescent protein (GFP) using E. coli S30 extract as a source of RNA translation reagents.
Cancer is one of the leading causes of mortality in humans, and recent work has focused on the area of immuno-oncology, in which the immune system is used to specifically target cancerous cells. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is an emerging therapeutic target in human cancers owing to its role in degrading cyclic GMP-AMP (cGAMP), an agonist of the stimulator of interferon genes (STING). The available structures of ENPP1 are of the mouse enzyme, and no structures are available with anything other than native nucleotides. Here, the first X-ray crystal structures of the human ENPP1 enzyme in an apo form, with bound nucleotides and with two known inhibitors are presented. The availability of these structures and a robust crystallization system will allow the development of structure-based drug-design campaigns against this attractive cancer therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.