In technical chemistry, systems biology and biotechnology, the construction of predictive models has become an essential step in process design and product optimization. Accurate modelling of the reactions requires detailed knowledge about the processes involved. However, when concerned with the development of new products and production techniques for example, this knowledge often is not available due to the lack of experimental data. Thus, when one has to work with a selection of proposed models, the main tasks of early development is to discriminate these models. In this article, a new statistical approach to model discrimination is described that ranks models wrt. the probability with which they reproduce the given data. The article introduces the new approach, discusses its statistical background, presents numerical techniques for its implementation and illustrates the application to examples from biokinetics.
Two different approaches to parameter estimation (PE) in the context of polymerization are introduced, refined, combined, and applied. The first is classical PE where one is interested in finding parameters which minimize the distance between the output of a chemical model and experimental data. The second is Bayesian PE allowing for quantifying parameter uncertainty caused by experimental measurement error and model imperfection. Based on detailed descriptions of motivation, theoretical background, and methodological aspects for both approaches, their relation are outlined. The main aim of this article is to show how the two approaches complement each other and can be used together to generate strong information gain regarding the model and its parameters. Both approaches and their interplay in application to polymerization reaction systems are illustrated. This is the first part in a two‐article series on parameter estimation for polymer reaction kinetics with a focus on theory and methodology while in the second part a more complex example will be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.