Coxa antetorta describes an abnormal torsion of the femur. It is commonly considered a cosmetic problem and is treated surgically only in severe cases and the presence of physical complaints. The purpose of this study was to identify deviations in gait kinematics and kinetics in pediatric patients caused by coxa antetorta and to categorize these deviations into primary and secondary deviations. We conducted a retrospective, cross-sectional three-dimensional (3D) gait analysis study to detect gait deviations in adolescents (n ¼ 18; age range 10.5-17.5 years) with coxa antetorta compared to age-matched healthy control subjects (n ¼ 17). Principal component (PC) analysis was used for data reduction. Linear mixed models applied to PC-scores were used to estimate the main effects within retained PCs followed by a post-hoc subgroup analysis. Patients walked with smaller external foot progression angle, greater knee adduction, more internally rotated and flexed hips and greater anterior pelvic tilt. Subgroup analysis revealed that-depending on knee alignment-patients had higher knee and hip adduction moments. These deviations in joint kinematics and kinetics may be associated with physical complaints and accelerated development of osteoarthritis. Assessment of gait deviations related to coxa antetorta using 3D gait analysis may be an additional tool in individual clinical decision-making. ß
Background Rotator cuff arthropathy with loss of active arm elevation can be successfully treated with nonanatomic reverse total shoulder arthroplasty to restore active elevation. Shoulder kinematics in this context predominantly focus on glenohumeral motion, neglecting scapular motion, although both substantially contribute to global shoulder motion. Because scapular kinematics are difficult to assess clinically and in the laboratory, they are not well understood and therefore are often reduced to glenohumeral models with a static scapula. Questions/purposes (1) Does the scapulohumeral rhythm (scapular rotation/glenohumeral elevation ratio) change during arm elevation? (2) Is there any scapular motion before arm elevation becomes clinically visible? (3) How do scapulothoracic kinematics during shoulder elevation differ between adults with and without rotator cuff arthropathy? Methods This was a comparative kinematics study of 20 young adult volunteers (reference group) without rotator cuff impairment (seven females, 13 males; mean age: 27 ± 3.5 years) and 20 patients (22 shoulders) with cuff tear arthropathy (10 females, 10 males; mean age: 74 ± 6.2 years). We used a three-dimensional (3-D) motion analysis system from Vicom with eight high-speed infrared cameras (frame rate 200 Hz) and 25 skin markers. Kinematics were studied for scapulothoracic and glenohumeral movements using the Upper Limb Evaluation in Movement Analysis (ULEMA) open-source model. The main motion studied was active arm elevation in the scapular plane. After data cleaning, modeling, and normalization, changes of scapulohumeral rhythm and scapular motion at the beginning of arm elevation were analyzed qualitatively, and statistical parametric mapping was applied to study the difference in scapulothoracic kinematics between adults with and without rotator cuff arthropathy. Results The scapular rhythm changes continuously during elevation. Whereas in people without rotator cuff arthropathy, a homogenous proportional relative angular contribution between 85° and 120° could be observed, this regular pattern was disturbed in patients with rotator cuff arthropathy. We observed medial scapular rotation before arm elevation became visible, followed by low lateral or even medial scapular rotation (approximately up to 25°) at the beginning of arm elevation. Patients with rotator cuff arthropathy exhibited more scapulothoracic motion between 50° and 93° of elevation than the reference group. Conclusions Our study introduces a double-normalized data analysis that allows for a more detailed assessment of complex scapular kinematics in a noninvasive way. Scapulothoracic motion is more complex than previously reported, especially in patients with rotator cuff arthropathy. The scapulohumeral rhythm changes dynamically throughout arm elevation. There is counter-directed scapular rotation because of muscular eng...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.