BackgroundLung cancer is one of the most common forms of cancer resulting in over a million deaths per year worldwide. Typically, the problem can be approached by developing more discriminative diagnosis methods. In this paper, computer-aided diagnosis was used to facilitate the prediction of characteristics of solitary pulmonary nodules in CT of lungs to diagnose early-stage lung cancer.MethodsThe synthetic minority over-sampling technique (SMOTE) was used to account for raw data in order to balance the original training data set. Curvelet-transformation textural features, together with 3 patient demographic characteristics, and 9 morphological features were used to establish a support vector machine (SVM) prediction model. Longitudinal data as the test data set was used to evaluate the classification performance of predicting early-stage lung cancer.ResultsUsing the SMOTE as a pre-processing procedure, the original training data was balanced with a ratio of malignant to benign cases of 1∶1. Accuracy based on cross-evaluation for the original unbalanced data and balanced data was 80% and 97%, respectively. Based on Curvelet-transformation textural features and other features, the SVM prediction model had good classification performance for early-stage lung cancer, with an area under the curve of the SVMs of 0.949 (P<0.001). Textural feature (standard deviation) showed benign cases had a higher change in the follow-up period than malignant cases.ConclusionsWith textural features extracted from a Curvelet transformation and other parameters, a sensitive support vector machine prediction model can increase the rate of diagnosis for early-stage lung cancer. This scheme can be used as an auxiliary tool to differentiate between benign and malignant early-stage lung cancers in CT images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.