Background-Systemic modulation of Group I and II metabotropic glutamate receptors (mGluRs) regulate ethanol self-administration in a variety of animal models. Although these receptors are expressed in reward-related brain regions, the anatomical specificity of their functional involvement in ethanol self-administration remains to be characterized. This study sought to evaluate the functional role of Group I (mGluR5) and Group II (mGluR2/3) in mesocorticolimbic brain regions in ethanol self-administration.
Small-conductance Ca(2+)-activated K(+) (KCa2) channels control neuronal excitability and synaptic plasticity, and have been implicated in substance abuse. However, it is unknown if genes that encode KCa2 channels (KCNN1-3) influence alcohol and drug addiction. In the present study, an integrative functional genomics approach shows that genetic datasets for alcohol, nicotine, and illicit drugs contain the family of KCNN genes. Alcohol preference and dependence QTLs contain KCNN2 and KCNN3, and Kcnn3 transcript levels in the nucleus accumbens (NAc) of genetically diverse BXD strains of mice predicted voluntary alcohol consumption. Transcript levels of Kcnn3 in the NAc negatively correlated with alcohol intake levels in BXD strains, and alcohol dependence enhanced the strength of this association. Microinjections of the KCa2 channel inhibitor apamin into the NAc increased alcohol intake in control C57BL/6J mice, while spontaneous seizures developed in alcohol-dependent mice following apamin injection. Consistent with this finding, alcohol dependence enhanced the intrinsic excitability of medium spiny neurons in the NAc core and reduced the function and protein expression of KCa2 channels in the NAc. Altogether, these data implicate the family of KCNN genes in alcohol, nicotine, and drug addiction, and identify KCNN3 as a mediator of voluntary and excessive alcohol consumption. KCa2.3 channels represent a promising novel target in the pharmacogenetic treatment of alcohol and drug addiction.
Rationale and objective Repeated and/or heightened elevations in glucocorticoids (e.g., repeated stress) can promote escalated drug-taking behaviors and induce compromised HPA axis function. Given that interoceptive/subjective drug cues are a fundamental factor in drug-taking behavior, we sought to determine the effects of exposure to repeated elevations in the glucocorticoid corticosterone (CORT) on the interoceptive effects of alcohol in rats using drug discrimination techniques. Methods Male Long Evans rats trained to discriminate alcohol (1 g/kg, IG) vs. water were exposed to CORT (300 μg/ml) in the home cage drinking water for 7 days. The interoceptive effects of experimenter- and self-administered alcohol were assessed and HPA axis function was determined. Results The interoceptive effects of experimenter- and self-administered alcohol were blunted following CORT. Control experiments determined that this decreased sensitivity was unrelated to discrimination performance impairments or decreased CORT levels at the time of testing and was dependent on repeated CORT exposure. Susceptibility to compromised HPA axis function following CORT exposure was suggested by an altered pattern of CORT secretion and blunted CORT response following injection of the synthetic glucocorticoid dexamethasone. Conclusions These findings present a possible behavioral mechanism for escalated alcohol drinking during episodes of heightened elevations in glucocorticoids (e.g., stress). That is, during these episodes, individuals may consume more alcohol to achieve the desired interoceptive effects. Understanding these behavioral mechanisms may lead to a better understanding of factors that promote alcoholism and alcohol abuse in at risk populations.
Metabotropic glutamate receptor subtypes (mGlu2/3) regulate a variety of alcohol-associated behaviors, including alcohol reinforcement, and relapse-like behavior. To date, the role of mGlu2/3 receptors in modulating the discriminative stimulus effects of alcohol has not been examined. Given that the discriminative stimulus effects of drugs are determinants of abuse liability and can influence drug seeking, we examined the contributions of mGlu2/3 receptors in modulating the discriminative stimulus effects of alcohol. In male Long-Evans rats trained to discriminate between alcohol (1 g/kg, IG) and water, the mGlu2/3 agonist LY379268 (0.3-10 mg/kg) did not produce alcohollike stimulus effects. However, pretreatment with LY379268 (1 and 3 mg/kg; in combination with alcohol) inhibited the stimulus effects of alcohol (1 g/kg). Systemic LY379268 (3 mg/kg, i.p.) was associated with increases in neuronal activity within the amygdala, but not the nucleus accumbens, as assessed by c-Fos immunoreactivity. Intra-amygdala activation of mGlu2/3 receptors by LY379268 (6 mg) inhibited the discriminative stimulus effects of alcohol, without altering response rate. In contrast, intra-accumbens LY379268 (3 mg) profoundly reduced response rate; however, at lower LY379268 doses (0.3, 1 mg), the discriminative stimulus effects of alcohol and response rate were not altered. These data suggest that amygdala mGlu2/3 receptors have a functional role in modulating the discriminative stimulus properties of alcohol and demonstrate differential motor sensitivity to activation of mGlu2/3 receptors in the amygdala and the accumbens. Understanding the neuronal mechanisms that underlie the discriminative stimulus effects of alcohol may prove to be important for future development of pharmacotherapies for treating alcoholism.
Escalations in alcohol drinking associated with experiencing stressful life events and chronic life stressors may be related to altered sensitivity to the interoceptive/subjective effects of alcohol. Indeed, through the use of drug discrimination methods, rats show decreased sensitivity to the discriminative stimulus (interoceptive) effects of alcohol following exposure to the stress hormone corticosterone (CORT). This exposure produces heightened elevations in plasma CORT levels (eg, as may be experienced by an individual during stressful episodes). We hypothesized that decreased sensitivity to alcohol may be related, in part, to changes in metabotropic glutamate receptors-subtype 5 (mGluR5) in the nucleus accumbens, as these receptors in this brain region are known to regulate the discriminative stimulus effects of alcohol. In the accumbens, we found reduced mGluR5 expression (immunohistochemistry and Western blot) and decreased neural activation (as measured by c-Fos immunohistochemistry) in response to a moderate alcohol dose (1 g/kg) following CORT exposure (7 days). The functional role of these CORT-induced adaptations in relation to the discriminative stimulus effects of alcohol was confirmed, as both the systemic administration of 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) an mGluR5 positive allosteric modulator and the intra-accumbens administration of (R,S)-2-Amino-2-(2-chloro-5-hydroxyphenyl)acetic acid sodium salt (CHPG) an mGluR5 agonist restored sensitivity to alcohol in discrimination-trained rats. These results suggest that activation of mGluR5 may alleviate the functional impact of the CORT-induced downregulation of mGluR5 in relation to sensitivity to alcohol. Understanding the contribution of such neuroadaptations to the interoceptive effects of alcohol may enrich our understanding of potential changes in subjective sensitivity to alcohol during stressful episodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.