Computations of daily global tropospheric water vapor flux values show the presence of a filamentary structure. The filaments, here called rivers, have lengths many times their widths and persist for many days while being translated through the atmosphere. They are present in data analysed for both 1984 and 1991. The water vapor flux maxima coincide quite closely to reflectivity features (averaged from wavelengths of 380 and 360 nm) as revealed by the Total Ozone Mapping Spectrometer (TOMS). It is suggested that the filamentary structure may also be present in other trace constituents.
Filamentary structure is a common feature of atmospheric water vapor transport; the filaments may be termed “atmospheric rivers” because some carry as much water as the Amazon [Newell et al., 1992]. An extratropical cyclone whose central pressure fall averages at least 1 hPa hr−1 for 24 hours is known in meteorology as a “bomb” [Sanders and Gyakum, 1980]. We report here an association between rivers and bombs. When a cyclonic system is penetrated by a river, the cyclonic center moves to be close to the position occupied by the leading edge of the river twelve hours previously and the central pressure falls. If the river then moves away from the cyclone, the central pressure rises. Based on a pilot study of pressure fall and water vapor flux convergence for two winter months, the cause of the explosive deepening appears to be latent heat liberation. This is substantiated by composite maps of seven Atlantic and seven Pacific bombs which show that the flux convergence near the bomb center has a comma cloud signature. The observed association may be useful in forecasting 12‐hour direction of motion and pressure change of rapidly developing cyclonic systems; the incorporation of better moisture data into numerical forecasting models may be the reason for the reported increase of skill in the prediction of bombs in recent years.
Results from the two campaigns clearly quantify, from a trace gas perspective, the seasonal differences in the continental outflow that were qualitatively anticipated based upon meteorological considerations, and show the impact of major meteorological features within the region on the quality of tropospheric air over
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.