Pioglitazone is effective in improving insulin resistance and liver histology in patients with nonalcoholic steatohepatitis (NASH). Because dysfunctional mitochondrial metabolism is a central feature of NASH, we hypothesized that an important target of pioglitazone would be alleviating mitochondrial oxidative dysfunction. To this end, we studied hepatic mitochondrial metabolism in mice fed high-fructose high-transfat diet (TFD) supplemented with pioglitazone for 20 wk, using nuclear magnetic resonance-based C isotopomer analysis. Pioglitazone improved whole body and adipose insulin sensitivity in TFD-fed mice. Furthermore, pioglitazone reduced intrahepatic triglyceride content and fed plasma ketones and hepatic TCA cycle flux, anaplerosis, and pyruvate cycling in mice with NASH. This was associated with a marked reduction in most intrahepatic diacylglycerol classes and, to a lesser extent, some ceramide species (C22:1, C23:0). Considering the cross-talk between mitochondrial function and branched-chain amino acid (BCAA) metabolism, pioglitazone's impact on plasma BCAA profile was determined in a cohort of human subjects. Pioglitazone improved the plasma BCAA concentration profile in patients with NASH. This appeared to be related to an improvement in BCAA degradation in multiple tissues. These results provide evidence that pioglitazone-induced changes in NASH are related to improvements in hepatic mitochondrial oxidative dysfunction and changes in whole body BCAA metabolism.
Objective To investigate the pharmacokinetic parameters of intermittent intraperitoneal (IP) cefazolin, and recommend a cefazolin dosing regimen in continuous ambulatory peritoneal dialysis (CAPD) patients. Design Prospective nonrandomized open study. Setting CAPD outpatient clinic in Albany, New York. Patients Seven volunteer CAPD patients without peritonitis. Three of the patients were nonanuric while 4 were anuric. Interventions Cefazolin (15 mg/kg total body weight) was given to each patient during the first peritoneal exchange. Blood and dialysate samples were collected at times 0, 0.5, 1, 2, 3, 6 (end of the first antibiotic-containing dwell), 24, and 48 hours after the administration of IP cefazolin. Urine samples were collected in nonanuric patients over the study period. Results The mean ± SD amount of cefazolin dose absorbed from the dialysate after the 6-hour dwell was 69.7% ± 8.0% of the administered dose. The cefazolin absorption rate constant from dialysate to serum was 0.21 ± 0.1 /hr (absorption half-life 3.5 ± 0.8 hr). The mean serum concentrations reached at 24 and 48 hours were 52.4 ± 3.7 mg/L and 30.3 ± 5.9 mg/L, respectively. The mean dialysate cefazolin concentrations reached at 24 and 48 hours were 15.1 ± 3.4 mg/L and 7.9 ± 1.4 mg/L, respectively. The cefazolin serum elimination rate constant was 0.02 ± 0.01 /hr (elimination half-life 31.5 ± 8.8 hr). The total cefazolin body clearance was 3.4 ± 0.6 mL/min. In the 3 nonanuric patients the mean renal clearance of cefazolin was 0.6 ± 0.4 mL/min. The peritoneal clearance of cefazolin was 1.0 ± 0.3 mL/min. The systemic volume of distribution of cefazolin was 0.2 ± 0.05 L/kg. No statistical difference was detected in pharmacokinetic parameters between anuric and nonanuric patients, although this may be due to the small number of patients in each group. Conclusion A single daily dose of cefazolin dosed at 15 mg/kg actual body weight in CAPD patients is effective in achieving serum concentration levels greater than the minimum inhibitory concentration for sensitive organisms over 48 hours, and dialysate concentration levels over 24 hours. Caution is warranted in extrapolation of dosing recommendations to patients who maintain a significant degree of residual renal function.
Pioglitazone is used effectively to treat non-alcoholic steatohepatitis (NASH), but there is marked variability in response. This study examined whether genetic variation contributes to pioglitazone response variability in patients with NASH. This genetic substudy includes 55 participants of a randomized controlled trial designed to determine the efficacy of long-term pioglitazone treatment in patients with NASH. The primary outcome of the clinical trial was defined as ≥2-point reduction in the non-alcoholic fatty liver disease activity score (NAS). In this substudy, single nucleotide polymorphisms (SNPs) in putative candidate genes were tested for association with primary and secondary outcomes. A genetic response score was constructed based on the sum of response alleles for selected genes. The genetic response score was significantly associated with achievement of the primary outcome (odds ratio 1.74; 95% CI 1.27–2.54; p = 0.0015). ADORA1 rs903361 associated with resolution of NASH (p = 0.0005) and change in the ballooning score among Caucasian and Hispanic patients (p = 0.0005). LPL rs10099160 was significantly associated with change in ALT (p = 0.0005). The CYP2C8∗3 allele, which confers faster pioglitazone clearance in allele carriers, was associated with change in fibrosis score (p = 0.026). This study identified key genetic factors that explain some of the inter-individual variability in response to pioglitazone among patients with NASH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.