Severe acute respiratory syndrome (SARS) is a life-threatening infectious disease which has been difficult to study and treat because of the lack of a readily available animal model. Intranasal infection of A/J mice with the coronavirus murine hepatitis virus strain 1 (MHV-1) produced pulmonary pathological features of SARS. All MHV-1-infected A/J mice developed progressive interstitial pneumonitis, including dense macrophage infiltrates, giant cells, and hyaline membranes, resulting in death of all animals. In contrast, other mouse strains developed only mild transitory disease. Infected A/J mice had significantly higher cytokine levels, particularly macrophage chemoattractant protein 1 (MCP-1/CCL-2), gamma interferon, and tumor necrosis factor alpha. Furthermore, FGL2/fibroleukin mRNA transcripts and protein and fibrin deposits were markedly increased in the lungs of infected A/J mice. These animals developed a less robust type I interferon response to MHV-1 infection than resistant C57BL/6J mice, and treatment with recombinant beta interferon improved survival. This study describes a potentially useful small animal model of human SARS, defines its pathogenesis, and suggests treatment strategies.
Fibrinogen-like protein 2 (fgl2)/fibroleukin is a member of the fibrinogen-related protein superfamily. In addition to its established role in triggering thrombosis, it is known to be secreted by T cells. The soluble fgl2 (sfgl2) protein generated in a baculovirus expression system bound to both T cells and bone marrow-derived dendritic cells (DC) in a specific manner. sfgl2 exhibited immunomodulatory properties capable of inhibiting T cell proliferation stimulated by alloantigens, anti-CD3/anti-CD28 mAbs, and Con A in a dose-dependent manner; however, it had no inhibitory effects on CTL activity. The time- and dose-dependent inhibitory effect of sfgl2 on alloreactive T cell proliferation could be neutralized by a mAb against mouse fgl2. Polarization toward a Th2 cytokine profile with decreased production of IL-2 and IFN-γ and increased production of IL-4 and IL-10 was observed in sfgl2-treated allogeneic cultures. Exposure of immature DC to sfgl2 abrogated the expression of CD80high and MHC class IIhigh molecules and markedly inhibited NF-κB nuclear translocation, thus inhibiting their maturation. sFgl2-treated DC had an impaired ability to stimulate allogeneic T cell proliferation. Maximal inhibition of proliferation was observed when allogeneic T cells were cultured with sfgl2-treated DC and sfgl2 protein was added in the culture. These data provide the first evidence to demonstrate that sfgl2 exerts immunosuppressive effects on T cell proliferation and DC maturation.
CD200Fc, a chimeric molecule including the extracellular domain of CD200 and a murine IgG2a Fc region, regulates immune responses following engagement of a cell surface receptor, CD200R, expressed on cells of the myeloid and T cell lineage. A recent report focused attention on a family of CD200Rs, but concluded that only one member used CD200 as its ligand. We have also cloned and sequenced a family of CD200Rs, but identify an amino terminus to two of the three isoforms not recognized by previous researchers. We show by FACS, using FITC-labeled CD200Fc, that COS7 cells transfected with all CD200R isoforms bind CD200 as ligand, although the functional consequences of this binding likely differs between the different isoforms. mAbs directed against the CD200 R1/R4 isoforms altered IL-2/IL-4 cytokine production and suppressed CTL responses in a fashion comparable to CD200Fc, with a significantly lesser effect seen following addition of anti-CD200 R2/R3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.