SummaryAnnexins are traditionally thought of as calcium-dependent phospholipid-binding proteins, but recent work suggests a more complex set of functions. More than a thousand proteins of the annexin superfamily have been identified in major eukaryotic phyla, but annexins are absent from yeasts and prokaryotes. The unique annexin core domain is made up of four similar repeats approximately 70 amino acids long, each of which usually contains a characteristic 'type 2' motif for binding calcium ions. Animal and fungal annexins also have non-homologous amino-terminal domains of varying length and sequence, which are responsible for the distinct localizations and specialized functions of the proteins through post-translational modification and binding to other proteins. Annexins interact with various cell-membrane components that are involved in the structural organization of the cell, intracellular signaling by enzyme modulation and ion fluxes, growth control, and they can act as atypical calcium channels. Analysis of site-specific conservation in the core domain suggests a role for certain buried residues in the calciumchannel activity of vertebrate annexins and in the structural stability of their core domains. Evolutionarily significant differences between subfamilies are preferentially localized to accessible sites on the protein surface that determine membrane binding and interactions with cytosolic proteins.
Contents Summary695I.Introduction695II.Structural analyses696III.Membrane‐related functions702IV.Enzyme‐related functions703V.Functional insights from proteome and transcriptome analyses704VI.Future perspectives706Acknowledgements708References708 Summary Annexins are an homologous, structurally related superfamily of proteins known to associate with membrane lipid and cytoskeletal components. Their involvement in membrane organization, vesicle trafficking and signaling is fundamental to cellular processes such as growth, differentiation, secretion and repair. Annexins exist in some prokaryotes and all eukaryotic phyla within which plant annexins represent a monophyletic clade of homologs descended from green algae. Genomic, proteomic and transcriptomic approaches have provided data on the diversity, cellular localization and expression patterns of different plant annexins. The availability of 35 complete plant genomes has enabled systematic comparative analysis to determine phylogenetic relationships, characterize structures and observe functional specificity between and within individual subfamilies. Short amino termini and selective erosion of the canonical type 2 calcium coordinating sites in domains 2 and 3 are typical of plant annexins. The convergent evolution of alternate functional motifs such as ‘KGD’, redox‐sensitive Cys and hydrophobic Trp/Phe residues argues for their functional relevance and contribution to mechanistic diversity in plant annexins. This review examines recent findings and advances in plant annexin research with special focus on their structural diversity, cellular and molecular interactions and their potential integrated functions in the broader context of physiological responses.
Annexin A1 (ANXA1) protein expression was evaluated by Western blot in a series of 32 head and neck squamous cell carcinomas (HNSCCs) in a search for molecular alterations that could serve as useful diagnostic/prognostic markers. ANXA1 down-regulation was observed in 24 cases (75%) compared with patient-matched normal epithelium. In relation to clinicopathological variables, ANXA1 down-regulation was significantly associated with advanced T stages (P = 0.029), locoregional lymph node metastases (P = 0.038), advanced disease stage (P = 0.006), hypopharyngeal localization (P = 0.038), and poor histological differentiation (P = 0.005). ANXA1 expression was also analyzed by immunohistochemistry in paraffin-embedded sections from 22 of 32 HNSCCs and 8 premalignant lesions. All dysplastic tissues showed significantly reduced ANXA1 expression compared to a strong positive signal observed in adjacent normal epithelia (except basal and suprabasal cells). A close association was observed between ANXA1 expression and the histological grade in HNSCC. Well-differentiated tumors presented a positive ANXA1 signal in highly keratinized areas whereas moderately and poorly differentiated tumors exhibited very weak or negative staining. Our findings clearly identify ANXA1 as an effective differentiation marker for the histopathological grading of HNSCCs and for the detection of epithelial dysplasia.
The production and metabolism of inositol phosphates in rat adrenal glomerulosa cells prelabeled with [3H]inositol and stimulated with angiotensin II were analyzed by high-performance anion-exchange chromatography. Exposure to angiotensin U was accompanied by a rapid and substantial decrease in the phospholipid precursor, phosphatidylinositol (PtdIns) 4,5-bisphosphate with only a slight and transient increase in the level of the biologically active product, inositol 1,4,5-trisphosphate (Ins-1,4,5-P3), to a peak at about 5 sec. Inositol 1,3,4-trisphosphate (Ins-1,3,4-P3), the putative metabolite of Ins-1,4,5-P3, was also formed rapidly and maintained an elevated steady-state level during stimulation by angiotensin II. Inositol 1,4-bisphosphate (Ins-1,4-P2) exhibited a simultaneous and prominent increase that could not be accounted for solely by direct breakdown of PtdIns 4-phosphate, indicating that large amounts of Ins-1,4,5-P3 must also have been produced and metabolized. The rapid formation of a substantial amount of inositol 4-monophosphate (Ins-4-P), with no significant change in the level of inositol 1-monophosphate (Ins-1-P) during the frrst minute of stimulation, was a notable feature of the glomerulosa cell response to angiotensin I. These observations indicate (i) that Ptdlns-4,5-P2 catabolism in the angiotensin-stimulated glomerulosa cell initially proceeds via Ins-1,4,5-P3 through Ins-1,3,4-P3 and Ins-1,4-P2 to form Ins-4-P rather than Ins-1-P and (u) that direct hydrolysis of PtdIns by phospholipase C does not occur during the initial phase of angiotensin action. In glomerulosa cells stimulated by angiotensin H in the presence of Li', the progressive accumulation of both Ins-4-P, and after a short lag period, Ins-1-P indicated that dephosphorylation of both isomers was inhibited by Li'. The increase of Ins-P isomers in the presence of Li' was associated with increased and progressive accumulation of Ins-1,4-P2 and Ins-1,3,4-P3 but not of Ins-1,4,5-P3. These data demonstrate that sustained and massive breakdown of PtdIns phosphates begins within seconds during cell activation by angiotensin II. The Ca2 -mobilizing metabolite, Ins-1,4,5-P3, is rapidly converted to Ins-1,3,4-P3 and degraded through Ins-1,4-P2 and Ins-4-P, in contrast to the previous view that conversion to Ins-1-P is the major route of PtdIns 4,5-bisphosphate metabolism.The action of angiotensin II upon aldosterone production in the adrenal gland is exerted through receptor-mediated hydrolysis of inositol phospholipids and increased cytosolic Ca2l concentration (1-5). Such ligand-induced turnover of PtdIns phosphates is a common feature ofthe transmembrane signaling mechanism during activation of target cells by Ca2l-dependent hormones and other stimuli (6, 7). The most important event in this process is the cleavage by phospholipase C of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) to provide inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and 1,2-diacyl-sn-glycerol, both of which act as intracellular second messengers to ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.