Identification of bona fide Listeria isolates into the six species of the genus normally requires only a few tests. Aberrant isolates do occur, but even then only one or two extra confirmatory tests are generally needed for identification to species level. We have discovered a hemolytic-positive, rhamnose and xylose fermentationnegative Listeria strain with surprising recalcitrance to identification to the species level due to contradictory results in standard confirmatory tests. The issue had to be resolved by using total DNA-DNA hybridization testing and then confirmed by further specific PCR-based tests including a Listeria microarray assay. The results show that this isolate is indeed a novel one. Its discovery provides the first fully documented instance of a hemolytic Listeria innocua strain. This species, by definition, is typically nonhemolytic. The L. innocua isolate contains all the members of the PrfA-regulated virulence gene cluster (Listeria pathogenicity island 1) of L. monocytogenes. It is avirulent in the mouse pathogenicity test. Avirulence is likely at least partly due to the absence of the L. monocytogenes-specific allele of iap, as well as the absence of inlA, inlB, inlC, and daaA. At least two of the virulence cluster genes, hly and plcA, which encode the L. monocytogenes hemolysin (listeriolysin O) and inositol-specific phospholipase C, respectively, are phenotypically expressed in this L. innocua strain. The detection by PCR assays of specific L. innocua genes (lin0198, lin0372, lin0419, lin0558, lin1068, lin1073, lin1074, lin2454, and lin2693) and noncoding intergenic regions (lin0454-lin0455 and nadA-lin2134) in the strain is consistent with its L. innocua DNA-DNA hybridization identity. Additional distinctly different hemolytic L. innocua strains were also studied.
The problem of Staphylococcus aureus and other species as contaminants in the food supply remains significant on a global level. Time and temperature abuse of a food product contaminated with enterotoxigenic staphylococci can result in formation of enterotoxin, which can produce foodborne illness when the product is ingested. Between 100 and 200 ng of enterotoxin can cause symptoms consistent with staphylococcal intoxication. Although humans are the primary reservoirs of contamination, animals, air, dust, and food contact surfaces can serve as vehicles in the transfer of this pathogen to the food supply. Foods may become contaminated during production or processing and in homes or food establishments, where the organism can proliferate to high concentrations and subsequently produce enterotoxin. The staphylococcal enterotoxins are highly heat stable and can remain biologically active after exposure to retort temperatures. Prior to the development of serological methods for the identification of enterotoxin, monkeys (gastric intubation) and later kittens (intravenous injection) were used in assays for toxin detection. When enterotoxins were identified as mature proteins that were antigenic, serological assays were developed for use in the laboratory analysis of foods suspected of containing preformed enterotoxin. More recently developed methods are tracer-labeled immunoassays. Of these methods, the enzyme-linked immunosorbent assays are highly specific, highly sensitive, and rapid for the detection of enterotoxin in foods.
The microbial quality of five types of fresh produce obtained at the retail level was determined by standard quantitative techniques. These techniques included aerobic plate count (APC), total coliform counts, Escherichia coli counts, and yeast and mold counts. Three different methods were used to determine total coliform counts, which consisted of MacConkey agar plate counts, Colicomplete most probable number counts, and Petrifilm E. coli (EC) plate counts. The mean APCs for sprouts, lettuce, celery, cauliflower, and broccoli were 8.7, 8.6, 7.5, 7.4. and 6.3 log10 CFU/g, respectively. MacConkey agar counts indicated that 89 to 96% of the APCs consisted of gram-negative bacteria. Yeast and mold counts were in a range expected of fresh produce. Fresh produce was also analyzed for human pathogens. Samples were analyzed for Staphylococcus spp., Bacillus spp., Salmonella spp., Listeria spp., and Campylobacter spp. One isolate of Staphylococcus was found to be enterotoxigenic, and one species of Bacillus was also toxigenic. Neither Salmonella spp. nor Campylobacter spp. were detected in any of the produce samples. A variety of Listeria spp., including Listeria monocytogenes, were found in fresh produce.
Bacillus cereus is a group of ubiquitous facultative anaerobic sporeforming Gram-positive rods commonly found in soil. The spores frequently contaminate a variety of foods, including produce, meat, eggs, and dairy products. Foodborne illnesses associated with toxins produced by B. cereus can result in self-limiting diarrhea or vomiting. Plate enumeration methods recommended by recognized food authorities to detect the presence of B. cereus in potentially contaminated food products do not inhibit other Gram-positive competitive bacteria. This study evaluated the use of Bacara, a new chromogenic agar, as an efficient method to identify and enumerate B. cereus group from food matrixes, even in the presence of background flora. Inclusivity and exclusivity testing was performed using four different selective and differential media for B. cereus, including Mannitol Egg Yolk Polymyxin (MYP), Polymyxin Pyruvate Egg-Yolk Mannitol Bromothymol Blue Agar, Bacillus Chromogenic Media, Brilliance, and Bacara. MYP and Bacara were also used in plate enumeration studies to isolate B. cereus from artificially contaminated foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.