We derive analytic expressions for the critical temperatures of the superconducting (SC) and pseudogap (PG) transitions of the high-Tc cuprates as a function of doping. These are in excellent agreement with the experimental data both for single-layered materials such as LSCO, Bi2201 and Hg1201 and multi-layered ones, such as Bi2212, Bi2223, Hg1212 and Hg1223. Optimal doping occurs when the chemical potential vanishes, thus leading to an universal expression for the optimal SC transition temperatures. This allows for the obtainment of a quantitative description of the growth of such temperatures with the number of layers, N, which accurately applies to the Bi, Hg and T l families of cuprates. We study the pressure dependence of the SC transition temperatures, obtaining excellent agreement with the experimental data for different materials and dopings. These results are obtained from an effective Hamiltonian for the itinerant oxygen holes, which includes both the electric repulsion between them and their magnetic interactions with the localized copper ions. We show that the former interaction is responsible for the SC and the latter, for the PG phases, the phase diagram of cuprates resulting from the competition of both. The Hamiltonian is defined on a bipartite oxygen lattice, which results from the fact that only the px and py oxygen orbitals alternatively hybridize with the 3d copper orbitals. From this, we can provide an unified explanation for the d x 2 −y 2 symmetry of both the SC and PG order parameters and obtain the Fermi pockets observed in ARPES experiments.
-Group contribution methods have been widely used for the estimation and prediction of properties of a great variety of chemical compounds and mixtures of compounds. In this paper, the glass transition temperature of polymers is evaluated by a second-order group contribution method previously developed by Ourique and Silva Telles (1997). From a total of 1018 polymers in the data base, 923 are selected as the training set to which group and interacting group contributions are assigned. The remaining 95 polymers are used as the validation set. Results are compared to the ones obtained by application method of Van Krevelen method's to the same data base.
The effect of surface topography upon the adsorption of dimer molecules is analyzed by means of grand canonical ensemble Monte Carlo simulations. Heterogeneous surfaces were assumed to consist of a square lattice containing active sites with two different energies. These were distributed in three different configurations: a random distribution of isolated sites; a random distribution of grains with four high-energy sites; and a random distribution of grains with nine high-energy sites. For the random distribution of isolated sites, the results are in good agreement with the molecular simulations performed by Nitta et al. (1997). In general, the comparison with theoretical models shows that the Nitta et al. (1984) isotherm presents good predictions of dimer adsorption both on homogeneous and heterogeneous surfaces with sites having small differences in characteristic energies. The molecular simulation results also show that the energy topology of the solid surfaces plays an important role in the adsorption of dimers on solids with large differences in site energies. For these cases, the Nitta et al. model does not describe well the data on dimer adsorption on random heterogeneous surfaces (grains with one acid site), but does describe reasonably well the adsorption of dimers on more patchwise heterogeneous surfaces (grains with nine acid sites)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.