The G protein-coupled receptors of the C-X-C subfamily form a group among the chemokine receptors whose endogenous ligands are peptides with a common Cys-X-Cys motif. The CXC chemokine receptors 3 and 4 (CXCR3, CXCR4), which are investigated in this study, are linked to severe diseases such as cancer, multiple sclerosis, and HIV infections. Of particular interest, this receptor pair potentially forms a target for a polypharmacological drug treatment. Considering known ligands from public databases, such dual binders have not been identified yet. We therefore applied large-scale docking to the structure of CXCR4 and a homology model of CXCR3 with the goal to predict such dual binders, as well as compounds selective for either one of the receptors. Using signaling and biochemical assays, we showed that more than 50% of these predictions were correct in each category, yielding ligands with excellent binding efficiencies. These results highlight that docking is a suitable tool for the identification of ligands with tailored binding profiles to GPCRs, even when using homology models. More importantly, we present novel CXCR3-CXCR4 dual modulators that might pave the road to understanding the mechanisms of polypharmacological inhibition of these receptors.
The chemokine receptor CXCR3 is a G protein-coupled receptor, which conveys extracellular signals into cells by changing its conformation upon agonist binding. To facilitate the mechanistic understanding of allosteric modulation of CXCR3, we combined computational modeling with the synthesis of novel chemical tools containing boronic acid moiety, site-directed mutagenesis, and detailed functional characterization. The design of boronic acid derivatives was based on the predictions from homology modeling and docking. The choice of the boronic acid moiety was dictated by its unique ability to interact with proteins in a reversible covalent way, thereby influencing conformational dynamics of target biomolecules. During the synthesis of the library we have developed a novel approach for the purification of drug-like boronic acids. To validate the predicted binding mode and to identify amino acid residues responsible for the transduction of signal through CXCR3, we conducted a site-directed mutagenesis study. With the use of allosteric radioligand RAMX3 we were able to establish the existence of a second allosteric binding pocket in CXCR3, which enables different binding modes of structurally closely related allosteric modulators of CXCR3. We have also identified residues Trp109(2.60) and Lys300(7.35) inside the transmembrane bundle of the receptor as crucial for the regulation of the G protein activation. Furthermore, we report the boronic acid 14 as the first biased negative allosteric modulator of the receptor. Overall, our data demonstrate that boronic acid derivatives represent an outstanding tool for determination of key receptor-ligand interactions and induction of ligand-biased signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.