Chloroplasts are the powerhouse of the plant cell, yet they are resource-intensive and will cause photooxidative damage if their activity overshoots the demands of growth. The adjustment of chloroplast activity to match growth is therefore vital for stress acclimation. Here we identify a novel post-translational mechanism linking the conserved eukaryotic TOR kinase that promotes growth and the guanosine tetraphosphate (ppGpp) signaling pathway of prokaryotic origin that regulates chloroplast activity, and photosynthesis in particular. We show that RelA SpoT Homologue 3 (RSH3), a nuclear-encoded chloroplastic enzyme responsible for ppGpp biosynthesis, interacts directly with the TOR complex via a plant-specific N-terminal region (NTR) which is hyper-phosphorylated in a TOR-dependent manner. Downregulation of TOR activity reduces NTR phosphorylation, enhances ppGpp synthesis by RSH3, and causes a ppGpp-dependent decrease in photosynthetic capacity. Altogether we demonstrate that the TOR-RSH3 signaling axis is a novel and direct post-translational mechanism that allows chloroplast activity to be matched with plant growth, setting a new precedent for the regulation of organellar function by TOR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.