The electric power supply system is one of the most important research areas within sustainable and energy-efficient aviation for more-and especially all electric aircraft. This paper discusses the history in electrification, current trends with a broad overview of research activities, state of the art of electrification and an initial proposal for a short-range aircraft. It gives an overview of the mission profile, electrical sources, approaches for the electrical distribution system and the required electrical loads. Current research aspects and questions are discussed, including voltage levels, semiconductor technology, topologies and reliability. Because of the importance for safety possible circuit breakers for the proposed concept are also presented and compared, leading to a initial proposal. Additionally, a very broad review of literature and a state of the art discussion of the wiring harness is given, showing that this topic comes with a high number of aspects and requirements. Finally, the conclusion sums up the most important results and gives an outlook on important future research topics. INDEX TERMS Aviation, aerospace electronics, MEA, AEA, electric power supply systems, dc-dc power converters, power semiconductor devices, wide bandgap semiconductors, high voltage direct current (HVDC), circuit breaker, hybrid circuit breaker.
New aerodynamic aircraft concepts enable the storage of volumetric liquid hydrogen (LH 2 ). Additionally, the low temperatures of LH 2 allow technologies such as the superconductivity of electrical components. An increased power density of the onboard wiring harness and the electrical machine can be expected. Nevertheless, the power electronic drive inverter has to deliver high power and high switching frequencies (f PWM s) under challenging conditions. Therefore, knowledge of the electric behaviour of different semiconductor materials under cryogenic temperatures is essential to answer the question: "Are modern power electronics a technology enabler or a system bottleneck?" This publication shows a comprehensive novelty study for cryogenic power electronics based on experimental-driven semiconductor investigations, mission profile-based considerations, requirement analyses of superconducting electrical machines, and studies of the cooling concepts. All aspects are discussed within one interdisciplinary publication. A cryogenic system cannot be considered without a feasible cooling concept. Different semiconductor structures based on various materials (silicon (Si), silicon carbide (SiC) and gallium nitride (GaN)) are evaluated for their suitability. The collected data and the literature review draw a technology feasibility studies supported by detailed cooling system analyses and superconducting electrical machine requirements. The power demand and high f PWM lead to a SiC non-cryogenic inverter approach. Due to the detailed cooling system assessment, a loss reduction is achieved by optimising the junction temperature (T J ) under various load cases (LCs) out of the mission profile.INDEX TERMS Long-distance aircraft, fuel cell, liquid hydrogen, cryogenic cooler design, high temperature superconductivity, cryogenic electrical power supply system, cryogenic power electronics, experimental semiconductor comparison, cryogenic inverter design ACRONYMS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.