Endothelial cells play a central role in chronic inflammation: for example, they express adhesion molecules and present chemokines leading to enhanced leukocyte recruitment into tissues. Numerous markers of endothelial cells have been reported but there has been a lack of comparative data on their specificity. The present study compared the specificity of seven endothelial cell markers in the rheumatoid synovium and the colon of patients with Crohn's disease. These markers were: the sulphated epitope MECA-79, the Duffy antigen receptor for chemokines (DARC), von Willebrand factor, CD31 (PECAM-1), CD34, CD105 (endoglin) and CD146. MECA-79, DARC and von Willebrand factor showed a specific endothelial cell distribution. MECA-79, which recognizes sulphated ligands for leukocyte adhesion receptor L-selectin (CD62L), was selective for a subset of venules in highly inflamed tissue and was present in rheumatoid but not control osteoarthritic synovia. DARC was also specific for venules but had a more widespread distribution than MECA-79, and was present in rheumatoid and control synovia. The other markers all labelled endothelial cells in venules, arterioles and capillaries. However, they also localized to other cell types. For example, CD34 stained fibroblasts, CD146 was expressed by the pericytes and smooth muscle cells of vessel walls and CD31 and CD105 labelled a broad range of cell types.
RNA delivery is an attractive strategy to achieve transient gene expression in research projects and in cell- or gene-based therapies. Despite significant efforts investigating vector-directed RNA transfer, there is still a requirement for better efficiency of delivery to primary cells and in vivo. Retroviral platforms drive RNA delivery, yet retrovirus RNA-packaging constraints limit gene transfer to two genome-molecules per viral particle. To improve retroviral transfer, we designed a dimerization-independent MS2-driven RNA packaging system using MS2-Coat-retrovirus chimeras. The engineered chimeric particles promoted effective packaging of several types of RNAs and enabled efficient transfer of biologically active RNAs in various cell types, including human CD34+ and iPS cells. Systemic injection of high-titer particles led to gene expression in mouse liver and transferring Cre-recombinase mRNA in muscle permitted widespread editing at the ROSA26 locus. We could further show that the VLPs were able to activate an osteoblast differentiation pathway by delivering RUNX2- or DLX5-mRNA into primary human bone-marrow mesenchymal-stem cells. Thus, the novel chimeric MS2-lentiviral particles are a versatile tool for a wide range of applications including cellular-programming or genome-editing.
60 COX = cyclooxygenase; CRH = corticotropin-releasing hormone; FGF = fibroblast growth factor; HEV = high endothelial venules; HGF = hepatocyte growth factor; ICAM = intercellular adhesion molecule; IL = interleukin; IFN = interferon; MCP-1 = monocyte chemoattractant protein-1; MHC = major histocompatibility complex; MMP = matrix metalloproteinase; OA = osteoarthritic; RA = rheumatoid arthritis; TIMP = tissue inhibitor of metalloproteinase; TNF = tumour necrosis factor; VCAM = vascular cell adhesion molecule; VEGF = vascular endothelial growth factor. Arthritis Research & TherapyVol 6 No 2 Middleton et al. IntroductionRheumatoid arthritis (RA) is a chronic, systemic inflammatory disease affecting the joints, and is associated with increased morbidity and mortality [1][2][3]. The synovium or synovial membrane, which surrounds the joint cavity, becomes massively hypertrophied in RA. This tissue, known as pannus, can become invasive, penetrating and degrading the cartilage and bone, resulting in joint deformities, in functional deterioration and in profound disability.The lining layer, or intima, of the synovium is normally one to three cells thick and it comprises macrophage-like cells and fibroblast-like cells [4]. This layer undergoes thickening and hypertrophy in RA, largely due to the increased recruitment of monocytes from the blood supply in the deeper layer, or subintima, of the tissue [5,6]. Other inflammatory cells such as T cells (mainly CD45RO) and B lymphocytes migrate from the blood into the synovium and can form ectopic lymphoid follicles around blood vessels. These structures resemble the lymphoid follicles of lymph nodes. In addition, neutrophils migrate into the synovium and end up in large numbers in the synovial joint fluid. The role of endothelial cells in RA AbstractEndothelial cells are active participants in chronic inflammatory diseases. These cells undergo phenotypic changes that can be characterised as activated, angiogenic, apoptotic and leaky. In the present review, these phenotypes are described in the context of human rheumatoid arthritis as the disease example. Endothelial cells become activated in rheumatoid arthritis pathophysiology, expressing adhesion molecules and presenting chemokines, leading to leukocyte migration from the blood into the tissue. Endothelial cell permeability increases, leading to oedema formation and swelling of the joints. These cells proliferate as part of the angiogenic response and there is also a net increase in the turnover of endothelial cells since the number of apoptotic endothelial cells increases. The endothelium expresses various cytokines, cytokine receptors and proteases that are involved in angiogenesis, proliferation and tissue degradation. Associated with these mechanisms is a change in the spectrum of genes expressed, some of which are relatively endothelial specific and others are widely expressed by other cells in the synovium. Better knowledge of molecular and functional changes occurring in endothelial cells during chronic inflammation...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.