TRANCE (tumor necrosis factor [TNF]–related activation-induced cytokine) is a new member of the TNF family that is induced upon T cell receptor engagement and activates c-Jun N-terminal kinase (JNK) after interaction with its putative receptor (TRANCE-R). In addition, TRANCE expression is restricted to lymphoid organs and T cells. Here, we show that high levels of TRANCE-R are detected on mature dendritic cells (DCs) but not on freshly isolated B cells, T cells, or macrophages. Signaling by TRANCE-R appears to be dependent on TNF receptor–associated factor 2 (TRAF2), since JNK induction is impaired in cells from transgenic mice overexpressing a dominant negative TRAF2 protein. TRANCE inhibits apoptosis of mouse bone marrow–derived DCs and human monocyte-derived DCs in vitro. The resulting increase in DC survival is accompanied by a proportional increase in DC-mediated T cell proliferation in a mixed leukocyte reaction. TRANCE upregulates Bcl-xL expression, suggesting a potential mechanism for enhanced DC survival. TRANCE does not induce the proliferation of or increase the survival of T or B cells. Therefore, TRANCE is a new DC-restricted survival factor that mediates T cell–DC communication and may provide a tool to selectively enhance DC activity.
Heme oxygenase-1 (HO-1) is an intracellular enzyme that degrades heme and inhibits immune responses and inflammation in vivo. In most cell types, HO-1 is inducible by inflammatory stimuli and oxidative stress. Here we demonstrate that human monocyte-derived immature dendritic cells (iDCs) and several but not all freshly isolated rat splenic DC subsets and rat bone marrow-derived iDCs, spontaneously express HO-1. HO-1 expression drastically decreases during human and rat DC maturation induced in vitro. In IntroductionHeme oxygenases (HOs) are the rate-limiting intracellular enzymes that degrade heme to biliverdin, free divalent iron, and CO (for a review, see Otterbein and Choi 1 ). Three distinct HO enzymes have been identified: HO-1, HO-2, and HO-3. 1 HO-1 is a stress responsive gene whose expression is induced by a variety of stimuli including heme, heavy metals, inflammatory cytokines, and nitric oxide. 1 HO-1 is known for its cytoprotective effect against oxidative injuries and inflammation. 1 Induction of HO-1 expression by pharmacologic activators or gene transfer has had therapeutic effects in a variety of conditions or disorders involving the immune system, including transplantation and inflammatory disorders. [2][3][4][5][6][7][8] Biliverdin and its metabolite, bilirubin, are known for their antioxidant 9 and immunosuppressive effects. 10 HO-1 and CO have been shown to inhibit lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines and to increase LPS-induced expression of interleukin 10 (IL-10) in macrophages. 11,12 Moreover, IL-10 induces HO-1 expression in macrophages. [13][14][15] We previously reported that overexpression of HO-1, obtained with an HO-1-encoding adenovirus in rats having heart transplants, results in long-term allograft survival associated with an inhibition of cellular allogeneic immune responses, which could be mediated by adenoviral transduction of dendritic cells (DCs). 6 DCs play a central role in the induction of immunity and tolerance (for a review, see Steinman et al 16 ). In the absence of inflammation, immature DCs (iDCs) located in peripheral tissues specialize in taking up innocuous and cell-associated self antigens.They continuously capture antigens and migrate to draining lymph nodes where they can induce tolerance. 16 In the presence of danger signals, DCs undergo maturation, a process involving upregulation of surface major histocompatibility complex (MHC) class II and costimulatory molecules, secretion of proinflammatory and anti-inflammatory cytokines, and the acquired ability to stimulate differentiation of naive T cells into effector cells.Our working hypothesis was that DCs can express HO-1, which can regulate DC functions. In this study, we demonstrate that human and rat iDCs express HO-1 and that HO-1 expression is down-regulated by maturation stimuli. Our results also demonstrate that induction of HO-1 expression renders DCs refractory to LPS-induced maturation, but preserves IL-10 secretion, suggesting that HO-1 may be used to regulate DC f...
Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE),
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.