The hypothesis that histaminergic neurons are involved in brain arousal is supported by many studies. However, the effects of the selective long-term abolition of histaminergic neurons on the sleep-wake cycle, indispensable in determining their functions, remain unknown. We have compared brain histamine(HA)-immunoreactivity and the cortical-EEG and sleep-wake cycle under baseline conditions or after behavioral or pharmacological stimuli in wild-type (WT) and knock-out mice lacking the histidine decarboxylase gene (HDC-/-). HDC-/-mice showed an increase in paradoxical sleep, a decrease in cortical EEG power in theta-rhythm during waking (W), and a decreased EEG slow wave sleep/W power ratio. Although no major difference was noted in the daily amount of spontaneous W, HDC-/-mice showed a deficit of W at lights-off and signs of somnolence, as demonstrated by a decreased sleep latencies after various behavioral stimuli, e.g., WT-mice placed in a new environment remained highly awake for 2-3 hr, whereas HDC-/-mice fell asleep after a few minutes. These effects are likely to be attributable to lack of HDC and thus of HA. In WT mice, indeed, intraperitoneal injection of alpha-fluoromethylhistidine (HDC-inhibitor) caused a decrease in W, whereas injection of ciproxifan (HA-H3 receptor antagonist) elicited W. Both injections had no effect in HDC-/-mice. Moreover, PCR and immunohistochemistry confirmed the absence of the HDC gene and brain HA-immunoreactive neurons in the HDC-/-mice. These data indicate that disruption of HA-synthesis causes permanent changes in the cortical-EEG and sleep-wake cycle and that, at moments when high vigilance is required (lights off, environmental change em leader ), mice lacking brain HA are unable to remain awake, a prerequisite condition for responding to behavioral and cognitive challenges. We suggest that histaminergic neurons also play a key role in maintaining the brain in an awake state faced with behavioral challenges.
Abbreviations
AbstractNarcolepsy is characterized by excessive daytime sleepiness(EDS), cataplexy, direct onsets of rapid eye movement(REM) sleep from wakefulness(DREMs) and deficiency of orexins, neuropeptides that promote wakefulness largely via activation of histamine (HA) pathways. The hypothesis that the orexin defect can be circumvented by enhancing HA release was explored in narcoleptic mice and patients using tiprolisant, an inverse H3-receptor agonist. In narcoleptic orexin-/-mice, tiprolisant enhanced HA and noradrenaline neuronal activity, promoted wakefulness and decreased abnormal DREMs, all effects being amplified by co-administration of modafinil, a currently prescribed wake-promoting drug. In a pilot single-blind trial on 22 patients receiving a placebo followed by tiprolisant, both for one week, the Epworth Sleepiness Scale(ESS) score was reduced from a baseline value of 17.6 by 1.0 with the placebo(p>0.05) and 5.9 with tiprolisant(p<0.001). Excessive daytime sleep, unaffected under placebo, was nearly suppressed on the last days of tiprolisant-dosing. H3-receptor inverse agonists could constitute a novel effective treatment of EDS, particularly when associated with modafinil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.