Faria, Regis Rossi Alves. Aplicação de wavelets na análise de gestos musicais em timbres de instrumentos acústicos tradicionais. Dissertação (Mestrado).
In this paper we present our experience in using Virtual Reality Technologies to accurately reconstruct and further explore ancient and historic city buildings. Virtual reality techniques provide a powerful set of tools to explore and access the history of a city. In order to explore, visualize and hear such history, we divided the process in three phases: historical data gathering and analysis; 3D reconstruction and modeling; interactive immersive visualization, auralization and display. The set of guidelines devised helped to put into practice the extensible tools available in VR but not always easy to put together by inexperienced users. These guidelines also helped the smoothness of our work and helped avoiding problems in the subsequent phases. Most importantly, the X3D standard provided an environment capable of helping the design and validation process as well as the visualization phase. To finalize, we present the results achieved and further analyze the extensibility of the framework. Although VR tools and techniques are widely available at present, there is still a gap between using the tools and really taking advantage of VR in historic architectural reconstruction so that users might immerse themselves into this world and thus be able to consider various scenarios and possibilities that might lead to new insightful inspiration. This is an ongoing process that we think will increase and help current architectural development.
Inspired by principles for designing musical instruments we implemented a new 3D virtual instrument with a particular mapping of touchable virtual spheres to notes and chords of a given musical scale. The objects are metaphors for note keys organized in multiple lines, forming a playable spatial instrument where the player can perform certain sequences of notes and chords across the scale employing short gestures that minimizes jump distances. The idea of different arrangements for notes over the playable space is not new, being pursued on alternative keyboards for instance. This implementation employed an Oculus Rift and a Razer Hydra for gesture input and showed that customization of instrumental mappings using 3D tools can contribute to ease the performance of complex songs by allowing fast execution of specific note combinations.
A correct and wide coupling of sound to visual applications is still missing in most immersive VR environments, while future and advanced applications tend to demand a more realistic and integrated audiovisual solution to permit complete immersive experiences. Still there is a vast field of investigations till a correct and complete immersive system can reproduce realistic constructions of worlds. Sound fields simulation, although complex and of expensive implementation in the past, is now a potential candidate to improve spatial perception and correctness in CAVEs and other VR systems, but there are serious challenges and multiple techniques to do the job. In this paper we introduce our investigations in such fields and proposals to improve spatial perception and immersion experience in CAVEs through sound field simulation and correct matching of audio and visual cues. Additionally, a spatial sound immersion grading scale is proposed, to allow for system assessment and comparison of capabilities in delivering spatial immersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.