DEAD box helicases unwind RNA duplexes at the expense of ATP hydrolysis. Recently, unwinding has been demonstrated in the absence of ATP hydrolysis. Herein, we show that ADP.BeF(x) supports RNA unwinding by YxiN, a DEAD box helicase that specifically recognizes a hairpin in 23S rRNA. ADP.AlF(x) and ADP.MgF(x) do not promote RNA unwinding, but all ATP analogues induce a closed conformation of the helicase core as required for RNA unwinding. Our results show that the interdomain cleft in the helicase core closes upon ATP binding at the beginning of the cycle. Reopening occurs after ATP hydrolysis, most likely coupled to phosphate release.
Residual dipolar couplings (RDCs) observed by NMR in solution under weak alignment conditions can monitor average net orientations and order parameters of individual bonds. By their simple geometrical dependence, RDCs bear particular promise for the quantitative characterization of conformations in partially folded or unfolded proteins. We have systematically investigated the influence of amino acid substitutions X on the conformation of unfolded model peptides EGAAXAASS as monitored by their (1)H(Nu)-(15)N and (1)H(alpha)-(13)C(alpha) RDCs detected at natural abundance of (15)N and (13)C in strained polyacrylamide gels. In total, 14 single amino acid substitutions were investigated. The RDCs show a specific dependence on the substitution X that correlates to steric or hydrophobic interactions with adjacent amino acids. In particular, the RDCs for the glycine and proline substitutions indicate less or more order, respectively, than the other amino acids. The RDCs for aromatic substitutions tryptophane and tyrosine give evidence of a kink in the peptide backbone. This effect is also observable for orientation by Pf1 phages and corroborated by variations in (13)C(alpha) secondary shifts and (3)J(HNH)(alpha) scalar couplings in isotropic samples. RDCs for a substitution with the beta-turn sequence KNGE differ from single amino acid substitutions. Terminal effects and next neighbor effects could be demonstrated by further specific substitutions. The results were compared to statistical models of unfolded peptide conformations derived from PDB coil subsets, which reproduce overall trends for (1)H(Nu)-(15)N RDCs for most substitutions, but deviate more strongly for (1)H(alpha)-(13)C(alpha) RDCs. The outlined approach opens the possibility to obtain a systematic experimental characterization of the influence of individual amino acid/amino acid interactions on orientational preferences in polypeptides.
Flexible polypeptides such as unfolded proteins may access an astronomical number of conformations. The most advanced simulations of such states usually comprise tens of thousands of individual structures. In principle, a comparison of parameters predicted from such ensembles to experimental data provides a measure of their quality. In practice, analyses that go beyond the comparison of unbiased average data have been impossible to carry out on the entirety of such very large ensembles and have, therefore, been restricted to much smaller subensembles and/or nondeterministic algorithms. Here, we show that such very large ensembles, on the order of 10(4) to 10(5) conformations, can be analyzed in full by a maximum entropy fit to experimental average data. Maximizing the entropy of the population weights of individual conformations under experimental χ(2) constraints is a convex optimization problem, which can be solved in a very efficient and robust manner to a unique global solution even for very large ensembles. Since the population weights can be determined reliably, the reweighted full ensemble presents the best model of the combined information from simulation and experiment. Furthermore, since the reduction of entropy due to the experimental constraints is well-defined, its value provides a robust measure of the information content of the experimental data relative to the simulated ensemble and an indication for the density of the sampling of conformational space. The method is applied to the reweighting of a 35,000 frame molecular dynamics trajectory of the nonapeptide EGAAWAASS by extensive NMR (3)J coupling and RDC data. The analysis shows that RDCs provide significantly more information than (3)J couplings and that a discontinuity in the RDC pattern at the central tryptophan is caused by a cluster of helical conformations. Reweighting factors are moderate and consistent with errors in MD force fields of less than 3kT. The required reweighting is larger for an ensemble derived from a statistical coil model, consistent with its coarser nature. We call the method COPER, for convex optimization for ensemble reweighting. Similar advantages of large-scale efficiency and robustness can be obtained for other ensemble analysis methods with convex targets and constraints, such as constrained χ(2) minimization and the maximum occurrence method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.