Aim:Avian pathogenic Escherichia coli (APEC) is pathogenic strains of E. coli that are responsible for one of the most common bacterial diseases affecting poultry worldwide. This study was designed to determine the occurrence, antibiotic resistance profile, and antibiotic resistance genes of E. coli isolated from diseased and freshly dead broilers.Materials and Methods:In that context, a total of 200 broilers samples were examined by standard microbiological techniques for isolation of E. coli, and tested for their antimicrobial susceptibility against 15 antimicrobial agents using disc diffusion method. In addition, E. coli isolates were screened by multiplex polymerase chain reaction for detection of a number of resistance genes including aadA1 gene encodes streptomycin/neomycin, tetA encodes resistance to tetracycline, sul1 encodes sulfonamides, and β-lactamase encoding genes (blaTEM and blaSHV).Results:A total of 73 (36.5%) isolates were biochemically identified as E. coli strains. O78, O2, and O1 are the most prevalent serotypes detected. E. coli displayed a high resistance against penicillin (100%), followed by cefepime (95.8%) and a low resistance to norfloxacin (36.9%), and chloramphenicol (30%). Depending on the results of PCR, sul1 gene was the most predominant antibiotic resistant gene (87%) followed by blaTEM (78%), tetA genes (60%), and aadA (54%). However, blaSHV had the lowest prevalence (23%).Conclusion:The obtained results demonstrated the importance of studies on APEC and antibiotic resistance genes in our region which associated with intensive poultry industry, aiming to acquire preventive measures to minimize losses due to APEC and associated multidrug-resistance and resistance genes that of high significance to the rational use of antibiotics in clinical and public health.
Water pollution is a worldwide issue for the ecoenvironment and human society. Removal of various pollutants including heavy metals from the environment is a big challenge. Techniques of adsorption are usually simple and work effectively. In the current study, MWCNTs were prepared by chemical vapor deposition (CVD) of acetylene at 600°C. Fe-Co/CaCO 3 catalyst/support was prepared by wet impregnation method. The crystal size of the catalyst was identified using XRD. Acidified functionalized multiwalled carbon nanotubes (MWCNT) were produced from oxidation of multi-walled carbon nanotubes by mixture of H 2 O 2 ? HNO 3 in a ratio of 1:3 (v/v) at 25°C. The structure and purity of synthesized functionalized CNTs were examined by TEM, N 2 -BET method and thermogravimetric analysis. The functional groups produced at CNTs surface were investigated using FTIR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.