Communicated by J. CashSymmetry group analysis and similarity reduction of nonlinear system of coupled Burger equations in the form of nonlinear partial differential equation are analyzed via symmetry method. The symmetry method has led to similarity reductions of this equation to solvable form to third-order partial differential equation. The infinitesimal, similarity variables, dependent variables, and reduction have been tabulated. The search for solutions of these systems by using the improved tanh method has yielded certain exact solutions expressed by rational functions. Some figures are given to show the properties of the solutions.
In this paper, the symmetry method has been carried over to the generalized variable coefficients Zakharov—Kuznetsov equation. The infinitesimal symmetries and the optimal system are deduced and from this optimal system seven basic fields are determined, and for every vector field in the optimal system the admissible forms of the coefficients are found and this also leads us to transform the given equation into partial differential equations in two variables. After using some referenced transformations the mentioned partial differential equations eventually reduce to ordinary differential equations. The search for solutions to those equations has yielded many exact solutions in most cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.