BackgroundThe purpose of this study was to investigate the effect of acute dosing with silver nanoparticles (AgNPs) and identify potential ultrastructural alterations in the liver and kidney and their effect on blood parameters in the albino rat.MethodsTwenty rats were used to assess the acute effects of AgNPs. Rats in the treatment group were injected intraperitoneally with 0.5 mL of distilled water containing AgNPs at a dose of 2,000 mg/kg body weight followed by a second injection after 48 hours. Control rats received two 0.5 mL doses of distilled water only. After 3 days, blood samples were collected, and the rat kidneys and livers were extracted and processed for electron microscopy to investigate for hematologic and histopathologic alterations.ResultsRenal tubules showed swollen epithelium with cytoplasmic vacuolization, thickening of the basement membrane, and destruction of some mitochondrial cristae. Podocytes showed elongation and swelling of their primary and secondary processes. The basement membrane of the capillary tufts became thicker. The hepatic tissue showed narrowing of the sinusoids, swollen hepatocytes with hypertrophied nucleoli, and accumulation of fat globules in the nucleoplasm and cytoplasm. The hepatic sinusoids showed hypertrophied endothelial and Kupffer. Destructed cristae of some mitochondria, endosomes, and larger lysosomes filled with Ag-NPs were also observed in the Kupffer cells. Significant increases were observed in white blood cell count, lymphocyte count, granulocytes, and hemoglobin. There was a significant increase in serum creatinine, urea, and aspartate and alanine aminotransferases.ConclusionTo the best of the authors’ knowledge, the ultrastructural changes in renal and liver tissue observed in this study have not been described before. Our results suggest that injection of AgNPs could have severe cytotoxic effects on the structure and function of these organs.
The aim of this study is to investigate the protective effect of polyethylene glycol capped gold nanoparticles (PEG-AuNPs) on renal ischemia–reperfusion injury (I/R)–induced acute kidney injury (AKI) in diabetic mice via the activation of adenosine 5′ monophosphate–activated protein kinase—nuclear factor erythroid-2-related factor-2 (AMPK-Nrf2) pathway. Diabetes was induced in male mice (12/group) by streptozotocin (50 mg/kg) for 5 consecutive days. After 4 weeks, the mice have intravenously received doses of PEG-AuNPs (40, 150, and 400 µg/kg body weight) for 3 consecutive days, and then animals were subjected to 30 min ischemia and 48 h reperfusion. Following the treatment with three different doses of PEG-AuNPs, the levels of blood urea nitrogen (BUN) and creatinine were reduced. Obvious reduction in renal tubular atrophy, glomerular damage, mitochondrial damage, and necrotic area were ultra-structurally detected, and renal interstitial inflammation and apoptosis were diminished. Moreover, PEG-AuNPs increased the recovering of damaged renal cells, suppressed significantly levels of malondialdehyde (MDA), downregulated significantly the level of inflammatory cytokines (TNF-α and IL-1β), and upregulated the AMPK-Nrf2 pathway. PEG-AuNPs exhibited a promising alternative therapeutic target for diabetic renal I/R-induced AKI through upregulation of AMPK/PI3K/AKT path which additionally stimulated Nrf2-regulated antioxidant enzymes in a dose-dependent manner.
Graphical abstract
Background
The larvicidal and biochemical effects of chitin synthesis inhibitors (CSIs), namely lufenuron, flufenoxuron and hexaflumuron against the newly molted penultimate instar larvae of the house fly Musca domestica, were investigated.
Methods
Different concentrations from each tested compound were applied on forty individuals of M. domestica 2nd instar larvae. Four replicates were used for each concentration.
Results
The recorded LC25 and LC75 values were (166.11, 68.33 and 56.43 ppm) and (732.33, 283.02 and 248.45 ppm) for lufenuron, flufenoxuron and hexaflumuron, respectively. The results showed significant (P < 0.05) increase of mortality in larvae treated with different tested CSIs compounds. Mortality was greater in larvae treated by hexaflumuron than lufenuron and flufenoxuron. The main metabolites were tested in the larval whole-body tissue homogenate and findings could be summarized as follows: tested concentrations of CSIs (a) predominantly reduced the total carbohydrate, protein, lipid and cholesterol content at certain ages tested. (b) Disturbed the total carbohydrate content particularly for larvae treated with LC75 concentration of hexaflumuron. (c) Exerted the protein and lipid profiles and this effect was much more pronounced in larvae treated with hexaflumuron. (d) Reduced the quantitative cholesterol content and this reduction was found to be increased with development.
Conclusions
Tested CSIs in particular hexaflumuron showed remarkable larval toxicity and reduced the main metabolites content in the larval whole-body tissue homogenate of the house fly, M. domestica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.