Background: Pseudomonas aeruginosa ( P. aeruginosa ) represents a great threat to public health worldwide, due to its high ability to acquire resistance to different antibiotic classes. Carbapenems are effective against multidrug resistant (MDR) P. aeruginosa, but their widespread use has resulted in the emergence of carbapenem-resistant strains, which is considered a major global concern. This study aimed to determine the prevalence of carbapenem resistance among P. aeruginosa strains isolated from different sites of infection. Methods: Between October 2016 and February 2018, a total of 530 clinical specimens were collected from patients suffering from different infections, then processed and cultured. Isolates were tested for extended spectrum β-lactamase (ESBL) and metallo-β-lactamase (MBL) production using double-disk synergy test, modified Hodge tests, and disc potentiation test. PCR was used for the detection of selected OXA carbapenemases encoding genes. Results: Of 530 samples, 150 (28.3%) P. aeruginosa isolates were obtained. MDR strains were found in 66.6% (100 of 150) of isolates. Of 100 MDR P. aeruginosa isolates, 54 (54%) were ESBL producers and 21 (21%) carbapenem resistant P. aeruginosa . MBL production was found in 52.3% (eleven) carbapenem-resistant isolates. CTX-M15 was found among 55.5% of ESBL- producing P. aeruginosa . Carbapenemase genes detected were bla IMP (42.8%, nine of 21), bla VIM (52.3%, eleven of 21), bla GIM (52.3%, eleven of 21), bla SPM (38%, 8/21). In addition, isolates that were positive for the tested genes showed high resistance to other antimicrobials, such as colistin sulfate and tigecycline. Conclusion: Our study indicates that P. aeruginosa harboring ESBL and MBL with limited sensitivity to antibiotics are common among the isolated strains, which indicates the great problem facing the treatment of serious infectious diseases. As such, there is a need to study the resistance patterns of isolates and carry out screening for the presence of ESBL and MBL enzymes, in order to choose the proper antibiotic.
Introduction: Escherichia (E.) coli can cause intestinal and extra-intestinal infections which ranged from mild to life-threatening infections. The severity of infection is a product of many factors including virulence properties and antimicrobial resistance. Objectives: To determine the antibiotic resistance pattern, the distribution of virulence factors and their association with one another and with some selected resistance genes. Methods: Virulence properties were analyzed phenotypically while antimicrobial susceptibility was tested by Kirby-Bauer agar disc diffusion method. In addition, 64 E. coli isolates were tested for 6 colicin genes, fimH, hlyA, traT, csgA, crl virulence genes and bla −CTX-M-15 , bla −oxa-2 , and bla −oxa-10 resistance genes by polymerase chain reaction (PCR). Results: Extra-intestinal pathogenic E. coli isolated from urine and blood samples represented a battery of virulence factors and resistance genes with a great ability to produce biofilm. Also, a significant association (P<0.05) among most of the tested colicin, virulence and resistance genes was observed. The observed associations indicate the importance and contribution of the tested factors in the establishment and the progress of infection especially with Extra-intestinal E. coli (ExPEC) which is considered a great challenging health problem. Conclusion: There is a need for studying how to control these factors to decrease the rate and the severity of infections. The relationship between virulence factors and resistance genes is complex and needs more studies that should be specific for each area.
Introduction: Multidrug resistant (MDR) Acinetobacter baumanii (A. baumannii) strains have emerged as novel nosocomial pathogens threatening patients' lives, especially in intensivecare units (ICUs). This study aims to determine the prevalence of carbapenemase genes and CTX-M-15 and the resistance pattern of carbapenemase producing isolates. Methods: A total of 530 clinical specimens were collected from patients suffering from different infections, antibiotic susceptibility test was performed using kirby-bauer disk diffusion method. ESβL production was detected phenotypically by double-disc synergy test (DDST). Carbapenemase production was tested by Modified Hodge Test (MHT). Then, these isolates were tested for MBL detection by disc potentiation test. Carbapenemase encoding genes (VIM, IMP, GIM and SPM, OXA-51, OXA-23 and OXA-143) and CTX-M-15 were tested by polymerase chain reaction (PCR). Results: Out of 530 samples, 20 bacterial isolates were identified as A. baumannii from different infectious cases, 35% of isolates were ESBL-producers. Eleven isolates were resistant to imipenem (4 isolates) and meropenem (7 isolates). All carbapenem resistant isolates were MHT positive. Nine (45%) isolates were confirmed as A. baumannii by OXA-51 (all were carbapenem resistant). Distribution of IMP, VIM, GIM and SPM, OXA-23, OXA-143 and CTX-M-15 by PCR were 55, 50, 50, 25, 35, 45 and 33% respectively. Conclusion: The high prevalence of resistance genes and the resistance pattern of the isolates indicate that the detection of ESBLs and MBLs phenotypically and genotypically with the study of the resistance pattern of the isolates is critically important for the surveillance of drug resistance in the hospital environment.
Aeromonas veronii is associated with substantial economic losses in the fish industry and with food-borne illness in humans. This study aimed to determine the prevalence, antibiogram profiles, sequence analysis, virulence and antimicrobial resistance genes, and pathogenicity of A. veronii recovered from Mugil seheli. A total of 80 fish were randomly gathered from various private farms in Suez Province, Egypt. Subsequently, samples were subjected to clinical, post-mortem, and bacteriological examinations. The retrieved isolates were tested for sequence analysis, antibiogram profile, pathogenicity, and PCR detection of virulence and resistance genes. The prevalence of A. veronii in the examined M. seheli was 22.5 % (18/80). The phylogenetic analyses revealed that the tested A. veronii strains shared high genetic similarity with other A. veronii strains from India, UK, and China. Using PCR it was revealed that the retrieved A. veronii isolates harbored the aerA, alt, ser, ompAII, act, ahp, and nuc virulence genes with prevalence of 100%, 82.9%, 61.7%, 55.3%, 44.7%, 36.17%, and 29.8%, respectively. Our findings revealed that 29.8% (14/47) of the retrieved A. veronii strains were XDR to nine antimicrobial classes and carried blaTEM, blaCTX-M, blaSHV, tetA, aadA1, and sul1 resistance genes. Likewise, 19.1% (9/47) of the obtained A. veronii strains were MDR to eight classes and possessed blaTEM, blaCTX-M, blaSHV, tetA, aadA1, and sul1 genes. The pathogenicity testing indicated that the mortality rates positively correlated with the prevalence of virulence-determinant genes. To our knowledge, this is the first report to reveal the occurrence of XDR and MDR A. veronii in M. seheli, an emergence that represents a risk to public health. Emerging XDR and MDR A. veronii in M. seheli frequently harbored aerA, alt, ser, ompAII, and act virulence genes, and blaTEM, sul1, tetA, blaCTX-M, blaSHV, and aadA1 resistance genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.