In this paper, a patch antenna (PA) and its self-complementary structure, slot antenna (SA) are proposed and designed for directly matching the impedance of a rectifier at 2.45 GHz resonance frequency. The structures of these antennas comprise three sections, meandered-line, spiral, and a double-folded geometries, which make their geometrical parameters to be varied in easy manner according to design equations. In order to enhance both the desired level of a complex reflection coefficient of antenna at given resonance frequencies and the specified lower and higher frequencies constituting the impedance frequency bands, a new fitness function is presented. This fitness function is applied in designing broadband or multiband antennas having approximately perfect conjugate impedance matching with the impedance of a rectifier suitably used for RF Energy Harvesting (RFEH) application. An optimization design methodology based on two programs operating in synchronous manner, the particle swarm optimization (PSO) implemented in MATLAB simulation tool and a CST MWS Electromagnetic (EM) solver, is applied to the designed PA as an illustrative example. The simulation results reveal that our design methodology is helpful to obtain an optimized PA (OPA) having good impedance matching at the desired resonance frequency along with appropriate band. Measured result of the fabricated prototype is in good agreement with the simulated ones. Moreover, acceptable features such as small size, omnidirectional radiation, and broadband operation satisfy the (2.4-2.5 GHz) WLAN band, which strongly makes the OPA a good candidate for RFEH applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.