The outbreak of the new coronavirus (COVID-19) had resulted in the creation of a disaster all over the world and it had become a highly acute and severe illness. The prevalence of this disease is increasing rapidly worldwide. The technology of deep learning (DL) became one of the hot topics in the computing context and it is widely implemented in a variety of the medical applications. Those techniques proved to be sufficient tools for the clinicians in automatic COVID-19 diagnosis. In the present study, a DL technology that is based on convolution neural networks (CNN) models had been suggested for the binary COVID-19 classification. In the initial step of the suggested model, COVID-19 data-set of chest X-ray (CXR) images have been obtained then preprocessed. Whereas in the second stage, a new CNN model has been built and trained for diagnosing COVID-19 data-set as (positive) infection or (negative) normal cases. The suggested architecture had a success in classifying COVID-19 with the training model accuracy that had reached 96.57% for the training data-set and 92.29% for validating data-set and could reach the target point with a minimal learning rate for training this model with promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.