Protein secretion in cancer cells defines tumor survival and progression by orchestrating the microenvironment. Studies suggest the occurrence of active secretion of cytosolic proteins in liver cancer and their involvement in tumorigenesis. Here, we investigated the identification of extended-synaptotagmin 1 (E-Syt1), an endoplasmic reticulum (ER)-bound protein, as a key mediator for cytosolic protein secretion at the ER–plasma membrane (PM) contact sites. Cytosolic proteins interacted with E-Syt1 on the ER, and then localized spatially inside SEC22B + vesicles of liver cancer cells. Consequently, SEC22B on the vesicle tethered to the PM via Q-SNAREs (SNAP23, SNX3, and SNX4) for their secretion. Furthermore, inhibiting the interaction of protein kinase Cδ (PKCδ), a liver cancer-specific secretory cytosolic protein, with E-Syt1 by a PKCδ antibody, decreased in both PKCδ secretion and tumorigenicity. Results reveal the role of ER–PM contact sites in cytosolic protein secretion and provide a basis for ER-targeting therapy for liver cancer.
Protein kinase C delta (PKCδ) is a multifunctional PKC family member and has been implicated in many types of cancers, including liver cancer. Recently, we have reported that PKCδ is secreted from liver cancer cells, and involved in cell proliferation and tumor growth. However, it remains unclear whether the extracellular PKCδ directly regulates cell surface growth factor receptors. Here, we identify epidermal growth factor receptor (EGFR) as a novel interacting protein of the cell surface PKCδ in liver cancer cells. Imaging studies showed that secreted PKCδ interacted with EGFR‐expressing cells in both autocrine and paracrine manners. Biochemical analysis revealed that PKCδ bound to the extracellular domain of EGFR. We further found that a part of the amino acid sequence on the C‐terminal region of PKCδ was similar to the putative EGFR binding site of EGF. In this regard, the point mutant of PKCδ in the binding site lacked the ability to bind to the extracellular domain of EGFR. Upon an extracellular PKCδ‐EGFR association, ERK1/2 activation, downstream of EGFR signaling, was apparently induced in liver cancer cells. This study indicates that extracellular PKCδ behaves as a growth factor and provides a molecular basis for extracellular PKCδ‐targeting therapy for liver cancer.
Extended-synaptotagmin 1 (E-Syt1) is an endoplasmic reticulum membrane protein that is involved in cellular lipid transport. Our previous study identified E-Syt1 as a key factor for the unconventional protein secretion of cytoplasmic proteins in liver cancer, such as protein kinase C delta (PKCδ); however, it is unclear whether E-Syt1 is involved in tumorigenesis. Here, we showed that E-Syt1 contributes to the tumorigenic potential of liver cancer cells. E-Syt1 depletion significantly suppressed the proliferation of liver cancer cell lines. Database analysis revealed that E-Syt1 expression is a prognostic factor for hepatocellular carcinoma (HCC). Immunoblot analysis and cell-based extracellular HiBiT assays showed that E-Syt1 was required for the unconventional secretion of PKCδ in liver cancer cells. Furthermore, deficiency of E-Syt1 suppressed the activation of insulin-like growth factor 1 receptor (IGF1R) and extracellular-signal-related kinase 1/2 (Erk1/2), both of which are signaling pathways mediated by extracellular PKCδ. Three-dimensional sphere formation and xenograft model analysis revealed that E-Syt1 knockout significantly decreased tumorigenesis in liver cancer cells. These results provide evidence that E-Syt1 is critical for oncogenesis and is a therapeutic target for liver cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.