Graphene has recently been shown to exhibit ultrafast conductivity modulation due to periodic carrier heating by either terahertz (THz) waves, leading to self-induced harmonic generation, or the intensity beat-note of two-color optical radiation. We exploit the latter to realize an optoelectronic photomixer for coherent, continuous-wave THz detection, based on a photoconductive antenna with multilayer graphene in the gap. While for biased THz emitters, the dark current would pose a serious detriment for performance, we show that this is not the case for bias-free THz detection, and demonstrate a detection bandwidth of at least 700 GHz at room temperature, even without optimized tuning of the doping. We account for the photocurrent and photomixing response using detailed simulations of the time-dependent carrier distribution, which also indicate significant potential for enhancement of the sensitivity, to become competitive with well-established semiconductor photomixers.
Due to their attractive properties, silver nanowires (Ag-NWs) are newly used as nanoelectrodes in continuous wave (CW) THz photomixer. However, since these nanowires have small contact area, the nanowires fill factor in the photomixer active region is low, which leads to reduce the nanowires conductivity. In this work, we proposed to add graphene nanoantenna array as nanoelectrodes to the silver nanowires-based photomixer to improve the conductivity. In addition, the graphene nanoantenna array and the silver nanowires form new hybrid nanoelectrodes for the CW-THz photomixer leading to improve the device conversion efficiency by the plasmonic effect. Two types of graphene nanoantenna array are proposed in two separate photomixer configurations. These are the graphene nanodisk (GND) array and the graphene bow-tie nanoantenna (GNA) array. The photomixer active region is simulated using the computer simulation technology (CST) Studio Suite<sup>®</sup> for three optical wavelengths: 780 nm, 810 nm, and 850 nm. From the results, we found that the electric field in the active region is enhanced by 4.2 and 4.8 times for the aforementioned configurations, respectively. We also showed that the THz output power can be enhanced by 310 and 530 times, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.