There is a need for large-scale, longitudinal studies to determine the mechanisms by which the gut microbiome and its interactions with the host affect human health and disease. Current methods for profiling the microbiome typically utilize next-generation sequencing applications that are expensive, slow, and complex. Here, we present a synthetic biology platform for affordable, on-demand, and simple analysis of microbiome samples using RNA toehold switch sensors in paper-based, cell-free reactions. We demonstrate species-specific detection of mRNAs from 10 different bacteria that affect human health and four clinically relevant host biomarkers. We develop a method to quantify mRNA using our toehold sensors and validate our platform on clinical stool samples by comparison to RT-qPCR. We further highlight the potential clinical utility of the platform by showing that it can be used to rapidly and inexpensively detect toxin mRNA in the diagnosis of Clostridium difficile infections.
Early detection of SARS-CoV-2 infection is critical to reduce asymptomatic and pre-symptomatic transmission, curb the spread of variants, and maximize treatment efficacy. Low-analytical-sensitivity nasal-swab testing is commonly used for surveillance and symptomatic testing, but the ability of these tests to detect the earliest stages of infection has not been established. In this study, conducted between September 2020 and June 2021 in the greater Los Angeles County, California area, initially-SARS-CoV-2-negative household contacts of individuals diagnosed with COVID-19 prospectively self-collected paired anterior-nares nasal-swab and saliva samples twice daily for viral-load quantification by high-sensitivity RT-qPCR and digital-RT-PCR assays. We captured viral-load profiles from the incidence of infection for seven individuals and compared diagnostic sensitivities between respiratory sites. Among unvaccinated persons, testing saliva with a high-analytical-sensitivity assay detected infection up to 4.5 days before viral loads in nasal swabs reached concentrations detectable by low-analytical-sensitivity nasal-swab tests. For most participants, nasal swabs reached higher peak viral loads than saliva, but were undetectable or at lower loads during the first few days of infection. High-analytical-sensitivity saliva testing was most reliable for earliest detection. Our study illustrates the value of acquiring early (within hours after a negative high-sensitivity test) viral-load profiles to guide the appropriate analytical sensitivity and respiratory site for detecting earliest infections. Such data are challenging to acquire but critical to design optimal testing strategies with emerging variants in the current pandemic and to respond to future viral pandemics.
Transmission of SARS-CoV-2 in community settings often occurs before symptom onset, therefore testing strategies that can reliably detect people in the early phase of infection are urgently needed. Early detection of SARS-CoV-2 infection is especially critical to protect vulnerable populations who require frequent interactions with caretakers. Rapid COVID-19 tests have been proposed as an attractive strategy for surveillance, however a limitation of most rapid tests is their low sensitivity. Low-sensitivity tests are comparable to high sensitivity tests in detecting early infections when two assumptions are met: (1) viral load rises quickly (within hours) after infection and (2) viral load reaches and sustains high levels (>105– 106 RNA copies/mL). However, there are no human data testing these assumptions. In this study, we document a case of presymptomatic household transmission from a healthy young adult to a sibling and a parent. Participants prospectively provided twice-daily saliva samples. Samples were analyzed by RT-qPCR and RT-ddPCR and we measured the complete viral load profiles throughout the course of infection of the sibling and parent. This study provides evidence that in at least some human cases of SARS-CoV-2, viral load rises slowly (over days, not hours) and not to such high levels to be detectable reliably by any low-sensitivity test. Additional viral load profiles from different samples types across a broad demographic must be obtained to describe the early phase of infection and determine which testing strategies will be most effective for identifying SARS-CoV-2 infection before transmission can occur.One sentence summaryIn some human infections, SARS-CoV-2 viral load rises slowly (over days) and remains near the limit of detection of rapid, low-sensitivity tests.
Early detection of SARS-CoV-2 infection is critical to reduce asymptomatic and pre-symptomatic spread of COVID-19, curb the spread of viral variants by travelers, and maximize efficacy of therapeutic treatments. We designed a study to evaluate the preferred test sensitivity and sample type (saliva and nasal swab) for detecting early infections of COVID-19. We performed a case-ascertained study to monitor household contacts of individuals recently diagnosed with a SARS-CoV-2 infection. From those individuals, we obtained twice-daily self-collected anterior-nares nasal swabs and saliva samples and quantified SARS-CoV-2 RNA viral loads in those samples using high-sensitivity RT-qPCR and RT-ddPCR assays. We found that SARS-CoV-2 RNA first appears in saliva and then in nasal-swab samples. A high-sensitivity (limit of detection of ~103 copies/mL) RNA test detected SARS-CoV-2 virus in saliva 1.5 to 4.5 days before the viral load in the paired nasal-swab samples exceeded the limit of detection of low-sensitivity tests. It was possible to observe a high (>107-108 copies/mL) viral load in saliva samples while the paired nasal swab was either negative or had low (~103 copies/mL) viral load. Our results indicate that both sampling site and test sensitivity must be considered to ensure early detection of SARS-CoV-2 infection: high-sensitivity tests that use saliva can detect SARS-CoV-2 infection days earlier than low-sensitivity tests that use nasal swabs. Furthermore, early in the infection, low-sensitivity tests that use nasal swabs may miss SARS-CoV-2-positive individuals with very high and potentially infectious viral loads in saliva.
Postoperative infection and thromboembolism represent significant sources of morbidity and mortality but cannot be easily tracked after hospital discharge. Therefore, a molecular test that could be performed at home would significantly impact disease management. Our lab has previously developed intravenously delivered ‘synthetic biomarkers’ that respond to dysregulated proteases to produce a urinary signal. These assays, however, have been limited to chronic diseases or acute diseases initiated at the time of diagnostic administration. Here, we formulate a subcutaneously administered sustained release system by using small PEG scaffolds (<10 nm) to promote diffusion into the bloodstream over a day. We demonstrate the utility of a thrombin sensor to identify thrombosis and an MMP sensor to measure inflammation. Finally, we developed a companion paper ELISA using printed wax barriers with nanomolar sensitivity for urinary reporters for point-of-care detection. Our approach for subcutaneous delivery of nanosensors combined with urinary paper analysis may enable facile monitoring of at-risk patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.