We explore the photodegradation mechanisms in functionalized tetracene (TIPS-Tc) films and how they are influenced by strong exciton−photon coupling in planar microcavities. We demonstrate that degradation of TIPS-Tc films exposed to air proceeds mainly through an oxygen-mediated pathway, assigned to endoperoxide (EPO) formation, whereas degradation in microcavities proceeds through oxygen-independent photodimerization. The aerobic and anaerobic decay mechanisms were found to differ in rate by more than two orders of magnitude. Both the EPO formation and photodimerization proceeded more efficiently in molecules in configurations favorable for the correlated triplet pair (TT) state formation (precursor to the singlet fission) and their immediate surroundings. For the photodimerization, an alkyne dimer is reported as one of the photoproducts, and its optical properties are presented. Strong coupling of TIPS-Tc to resonant microcavities enhanced the photodimerization quantum yield by a factor of 4.2, with the enhancement robust with respect to cavity detuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.