Vidalia onion is an important crop in Georgia's agriculture with worldwide recognition as a specialty vegetable. Vidalia onions are shortday, Granex-type sweet onions grown within a specific area of southeastern Georgia. Tomato spotted wilt virus (TSWV) has been endemic to Georgia crops for the past decade, but has gone undetected in Vidalia onions. Tobacco thrips (Frankliniella fusca) and Western flower thrips (Frankliniella occidentalis) are the primary vectors for TSWV in this region, and a number of plant species serve as reproductive reservoirs for the vector or virus. Iris yellow spot virus (IYSV), an emerging tospovirus that is potentially a devastating pathogen of onion, has been reported in many locations in the western United States (2,4). Thrips tabaci is the known vector for IYSV, but it is unknown if noncrop plants play a role in its epidemiology in Georgia. During October 2003, a small (n = 12) sampling of onions with chlorosis and dieback of unknown etiology from the Vidalia region was screened for a variety of viruses, and TSWV and IYSV infections were serologically detected. Since that time, leaf and bulb tissues from 4,424 onion samples were screened for TSWV and IYSV using double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) with commercial kits (Agdia Inc., Elkhart, IN). Samples were collected from 53 locations in the Vidalia region during the growing season between November 2003 and March 2004. Plants exhibiting stress, such as tip dieback, necrotic lesions, chlorosis or environmental damage were selected. Of these, 306 were positive for TSWV and 396 were positive for IYSV using positive threshold absorbance of three times the average plus two standard deviations of healthy negative onion controls. Positive serological findings of the onion tissues were verified by immunocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR) for TSWV (3) and RT-PCR for IYSV (1). In both instances, a region of the viral nucleocapsid (N) gene was amplified. The PCR products were analyzed with gel electrophoresis with an ethidium bromide stain in 0.8% agarose. Eighty-six percent (n = 263) of the TSWV ELISA-positive samples exhibited the expected 774-bp product and 55 percent (n = 217) of the IYSV ELISA-positive samples exhibited the expected 962-bp product. The reduced success of the IYSV verification could be attributed to the age and deteriorated condition of the samples at the time of amplification. Thrips tabaci were obtained from onion seedbeds and cull piles within the early sampling (n = 84) and screened for TSWV by the use of an indirect-ELISA to the nonstructural (NSs) protein of TSWV. Of the thrips sampled, 25 were positive in ELISA. While the incidence of IYSV and TSWV in the Vidalia onion crop has been documented, more research is needed to illuminate their potential danger to Vidalia onions. References: (1) I. Cortês et al. Phytopathology 88:1276, 1998. (2) L. J. du Toit et al. Plant Dis. 88:222, 2004. (3) R. K. Jain et al. Plant Dis. 82:900, 1998. (4) J. W. Moyer et al. (Abstr.) Phytopathology 93(suppl.):S115, 2003.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.