In aggressively growing tumors, hypoxia induces HIF-1α expression promoting angiogenesis. Previously, we have shown that overexpression of oncogenic microRNAs (miRNAs, miRs) miR526b/miR655 in poorly metastatic breast cancer cell lines promotes aggressive cancer phenotypes in vitro and in vivo. Additionally, miR526b/miR655 expression is significantly higher in human breast tumors, and high miR526b/miR655 expression is associated with poor prognosis. However, the roles of miR526b/miR655 in hypoxia are unknown. To test the relationship between miR526b/miR655 and hypoxia, we used various in vitro, in silico, and in situ assays. In normoxia, miRNA-high aggressive breast cancer cell lines show higher HIF-1α expression than miRNA-low poorly metastatic breast cancer cell lines. To test direct involvement of miR526b/miR655 in hypoxia, we analyzed miRNA-high cell lines (MCF7-miR526b, MCF7-miR655, MCF7-COX2, and SKBR3-miR526b) compared to controls (MCF7 and SKBR3). CoCl2-induced hypoxia in breast cancer further promotes HIF-1α mRNA and protein expression while reducing VHL expression (a negative HIF-1α regulator), especially in miRNA-high cell lines. Hypoxia enhances oxidative stress, epithelial to mesenchymal transition, cell migration, and vascular mimicry more prominently in MCF7-miR526b/MCF7-miR655 cell lines compared to MCF7 cells. Hypoxia promotes inflammatory and angiogenesis marker (COX-2, EP4, NFκB1, VEGFA) expression in all miRNA-high cells. Hypoxia upregulates miR526b/miR655 expression in MCF7 cells, thus observed enhancement of hypoxia-induced functions in MCF7 could be attributed to miR526b/miR655 upregulation. In silico bioinformatics analysis shows miR526b/miR655 regulate PTEN (a negative regulator of HIF-1α) and NFκB1 (positive regulator of COX-2 and EP4) expression by downregulation of transcription factors NR2C2, SALL4, and ZNF207. Hypoxia-enhanced functions in miRNA-high cells are inhibited by COX-2 inhibitor (Celecoxib), EP4 antagonist (ONO-AE3-208), and irreversible PI3K/Akt inhibitor (Wortmannin). This establishes that hypoxia enhances miRNA functions following the COX-2/EP4/PI3K/Akt pathways and this pathway can serve as a therapeutic target to abrogate hypoxia and miRNA induced functions in breast cancer. In situ, HIF-1α expression is significantly higher in human breast tumors (n = 96) compared to non-cancerous control tissues (n = 20) and is positively correlated with miR526b/miR655 expression. In stratified tumor samples, HIF-1α expression was significantly higher in ER-positive, PR-positive, and HER2-negative breast tumors. Data extracted from the TCGA database also show a strong correlation between HIF-1α and miRNA-cluster expression in breast tumors. This study, for the first time, establishes the dynamic roles of miR526b/miR655 in hypoxia.
The formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels are major events associated with most epithelial malignancies, including breast cancer. Angiogenesis is essential for cancer cell survival. Lymphangiogenesis is critical in maintaining tumoral interstitial fluid balance and importing tumor-facilitatory immune cells. Both vascular routes also serve as conduits for cancer metastasis. Intratumoral hypoxia promotes both events by stimulating multiple angiogenic/lymphangiogenic growth factors. Studies on tumor-associated lymphangiogenesis and its exploitation for therapy have received less attention from the research community than those on angiogenesis. Inflammation is a key mediator of both processes, hijacked by many cancers by the aberrant expression of the inflammation-associated enzyme cyclo-oxygenase (COX)-2. In this review, we focus on breast cancer and showed that COX-2 is a major promoter of both events, primarily resulting from the activation of prostaglandin (PG) E receptor EP4 on tumor cells, tumor-infiltrating immune cells, and endothelial cells; and the induction of oncogenic microRNAs. The COX-2/EP4 pathway also promotes additional events in breast cancer progression, such as cancer cell migration, invasion, and the stimulation of stem-like cells. Based on a combination of studies using multiple breast cancer models, we show that EP4 antagonists hold a major promise in breast cancer therapy in combination with other modalities including immune check-point inhibitors.
MicroRNA (miRNA/miR) miR526b and miR655 overexpressed tumor cell free secretions promote breast cancer phenotypes in the tumor microenvironment (TME). However, the mechanisms of miRNA regulating TME have never been investigated. With mass spectrometry analysis of MCF7-miRNA-overexpressed versus miRNA-low MCF7-Mock tumor cell secretomes we identified 34 novel secretory proteins coded by eight genes YWHAB, TXNDC12, MYL6B, SFN, FN1, PSMB6, PRDX4, and PEA15 differentially regulated. We performed bioinformatic analysis and used systems biology approaches to identify these markers’ role in breast cancer. Gene ontology analysis showed that the top functions are related to apoptosis, oxidative stress, membrane transport, and motility, supporting miRNA-induced phenotypes. In breast tumors these secretory markers expression is high and a strong positive correlation exists between upregulated markers’ mRNA expressions with miRNA cluster expression in luminal A breast tumors. Gene expression of secretome markers are higher in tumor tissues compared to normal samples, and immunohistochemistry data supported gene expression data. Moreover, both up and downregulated marker expressions are associated with breast cancer patient survival. miRNA regulates these marker protein expressions by targeting transcription factors of these genes. Premature miRNA (pri-miR526b and pri-miR655) are established breast cancer blood biomarkers. Here we report novel secretory markers upregulated by miR526b and miR655 (YWHAB, MYL6B, PSMB6, and PEA15) are significantly upregulated in breast cancer patients’ plasma, and are potential breast cancer biomarkers.
Formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels are major events associated with most epithelial malignancies, including breast cancer. Angiogenesis is essential for cancer cell survival. Lymphangiogenesis is critical in maintaining tumoral interstitial fluid balance and importing tumor-facilitatory immune cells. Both vascular routes also serve as conduits for cancer metastasis. Intratumoral hypoxia promotes both events by stimulating multiple angiogenic/lymphangiogenic growth factors. Studies on tumor-associated lymphangiogenesis and its exploitation for therapy have received less attention from the research community than those on angiogenesis. Inflammation is a key mediator of both processes, hijacked by many cancers by aberrant expression of the inflammation-associated enzyme cyclo-oxygenase (COX)-2. In this review, we focus on breast cancer and show that COX-2 is a major promoter of both events, primarily resulting from the activation of Prostaglandin (PG) E receptor EP4 on tumor cells, tumor-infiltrating immune cells, and endothelial cells; and induction of oncogenic microRNAs. COX-2/EP4 pathway also promotes additional events in breast cancer progression, such as cancer cell migration, invasion, and stimulation of stem–like cells. Based on a combination of studies using multiple breast cancer models, we show that EP4 antagonists hold a major promise in breast cancer therapy in combination with other modalities including immune check-point inhibitors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.