In mammalian spermatozoa, most of the type II alpha isoform of cAMP-dependent protein kinase (PKAII alpha) is anchored at the cytoplasmic surface of a specialized array of mitochondria in the flagellar cytoskeleton. This places the catalytic subunits of PKAII alpha in proximity with potential target substrates in the cytoskeleton. The mechanism by which PKAII alpha is anchored at the outer surface of germ cell mitochondria has not been elucidated. We now report the cloning of a cDNA that encodes a novel, germ cell A kinase anchor protein (AKAP) designated S-AKAP84. S-AKAP84 comprises 593 amino acids and contains a centrally located domain that avidly binds regulatory subunits (RII alpha and RII beta) of PKAII alpha and PKAII beta. The 3.2-kilobase S-AKAP84 mRNA and the cognate S-AKAP84 RII binding protein are expressed principally in the male germ cell lineage. Expression of S-AKAP84 is tightly regulated during development. The protein accumulates as spermatids undergo nuclear condensation and tail elongation. The timing of S-AKAP84 expression is correlated with the de novo accumulation of RII alpha and RII beta subunits and the migration of mitochondria from the cytoplasm (round spermatids) to the cytoskeleton (midpiece in elongating spermatids). Residues 1-30 at the NH2 terminus of S-AKAP84 constitute a putative signal/anchor sequence that may target the protein to the outer mitochondrial membrane. Immunofluorescence analysis demonstrated that S-AKAP84 is co-localized with mitochondria in the flagellum.
The derivation of thyrocyte-like cells in culture is of importance in the basic study of early thyroid embryogenesis and the generation of an unlimited clinical source of thyrocytes for genetic manipulation and cell transplantation. We have established an experimental system, which shows that 6-d-old embryoid bodies (EBs) differentiated from mouse embryonic stem (ES) cells expressed a set of genes traditionally associated with thyroid cells. The genes analyzed included the thyroid transcription factor PAX8, the Na(+)/I(-) symporter, thyroperoxidase, thyroglobulin, and the TSH receptor (TSHR). Immunofluorescent analysis demonstrated the presence of TSHR-positive cells as outgrowths from 8-d-old EBs cultured on chamber slides. Accordingly, this area of cells also expressed PAX8 and another thyroid transcription factor TTF2. Of importance, TSH, the main regulator of the thyroid gland, was necessary to maintain the expression of PAX8 and TSHR genes during EB differentiation. Furthermore, thyroid-specific function, such as cAMP generation by TSH, was maintained in this model. Together, these results suggested that the developmental program associated with thyrocyte development is recapitulated in the ES/EB model system. The differentiation of mouse ES cells into thyrocyte-like cells provides a powerful model for the study of thyrocyte developmental diseases associated with this lineage and contributes to the development of thyroid hormone-secreting cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.