Generative Adversarial Networks (GANs) are one of the well-known models to generate synthetic data including images, especially for research communities that cannot use original sensitive datasets because they are not publicly accessible. One of the main challenges in this area is to preserve the privacy of individuals who participate in the training of the GAN models. To address this challenge, we introduce a Differentially Private Conditional GAN (DP-CGAN) training framework based on a new clipping and perturbation strategy, which improves the performance of the model while preserving privacy of the training dataset. DP-CGAN generates both synthetic data and corresponding labels and leverages the recently introduced Rényi differential privacy accountant to track the spent privacy budget. The experimental results show that DP-CGAN can generate visually and empirically promising results on the MNIST dataset with a single-digit epsilon parameter in differential privacy.
Meta-analysis has been established as an effective approach to combining summary statistics of several genome-wide association studies (GWAS). However, the accuracy of meta-analysis can be attenuated in the presence of cross-study heterogeneity. We present sPLINK, a hybrid federated and user-friendly tool, which performs privacy-aware GWAS on distributed datasets while preserving the accuracy of the results. sPLINK is robust against heterogeneous distributions of data across cohorts while meta-analysis considerably loses accuracy in such scenarios. sPLINK achieves practical runtime and acceptable network usage for chi-square and linear/logistic regression tests. sPLINK is available at https://exbio.wzw.tum.de/splink.
Background Artificial intelligence (AI) has been successfully applied in numerous scientific domains. In biomedicine, AI has already shown tremendous potential, e.g., in the interpretation of next-generation sequencing data and in the design of clinical decision support systems. Objectives However, training an AI model on sensitive data raises concerns about the privacy of individual participants. For example, summary statistics of a genome-wide association study can be used to determine the presence or absence of an individual in a given dataset. This considerable privacy risk has led to restrictions in accessing genomic and other biomedical data, which is detrimental for collaborative research and impedes scientific progress. Hence, there has been a substantial effort to develop AI methods that can learn from sensitive data while protecting individuals' privacy. Method This paper provides a structured overview of recent advances in privacy-preserving AI techniques in biomedicine. It places the most important state-of-the-art approaches within a unified taxonomy and discusses their strengths, limitations, and open problems. Conclusion As the most promising direction, we suggest combining federated machine learning as a more scalable approach with other additional privacy-preserving techniques. This would allow to merge the advantages to provide privacy guarantees in a distributed way for biomedical applications. Nonetheless, more research is necessary as hybrid approaches pose new challenges such as additional network or computation overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.