We have prepared a viscous bicontinuous microemulsion consisting of water /[20 wt% POE-GIS +30 wt% PEPTME +47.5 wt% POE/POP-PDMS +2.5 wt% OA)] /DMPS system. A pseudoternary phase diagram was constructed for the mixture, and the bicontinuous microemulsion phase was characterized by means of rheometry and freeze-fracture transmission electron microscopy (FF-TEM).
We have prepared microemulsions consisting of water/[40 wt % polyoxyethylene (20 mol) glycerin isostearate (abbreviated as POE-GIS) + 60 wt % random copolymer of polyoxyethylene (POE, 38 mol)/polyoxypropylene (POP, 10 mol) pentaerythritol tetramethyl ether {abbreviated as PEPTME (38/10)}]/[polyoxyethylene (POE, 19 mol)/polyoxypropylene (POP, 19 mol) polydimethylsiloxane copolymer (abbreviated as POE/POP-PDMS)] and water/[40 wt % POE-GIS + 60 wt % PEPTME (38/10)]/[95 wt % POE/POP-PDMS + 5 wt % oleic acid (abbreviated as OA)] systems and characterized them with optical observation, rheometry, and freeze-fracture transmission electron microscopy (FF-TEM) images. Bicontinuous and droplet-type O/W (oil-in-water) microemulsions are formed depending on the volume fraction of water. The bicontinuous structure observed in the oil-rich region, upon successive dilution with water, is transformed into a droplet-type microemulsion without phase separation. The prepared droplet-type microemulsion containing polymeric silicone and random copolymer PEPTME (38/10) as a cosurfactant in the water-rich region has potential applications in cosmetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.